首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在pandas中根据多个条件计算每一行的分数,避免了for循环

在pandas中,可以使用条件筛选和向量化操作来避免使用for循环来计算每一行的分数。以下是一个示例代码:

代码语言:txt
复制
import pandas as pd

# 创建一个示例DataFrame
data = {'姓名': ['张三', '李四', '王五', '赵六'],
        '语文成绩': [80, 90, 85, 70],
        '数学成绩': [75, 85, 95, 80],
        '英语成绩': [90, 80, 75, 85]}
df = pd.DataFrame(data)

# 定义条件
condition1 = df['语文成绩'] > 80
condition2 = df['数学成绩'] > 80
condition3 = df['英语成绩'] > 80

# 使用条件筛选和向量化操作计算每一行的分数
df['分数'] = (condition1.astype(int) + condition2.astype(int) + condition3.astype(int)) * 10

# 打印结果
print(df)

输出结果如下:

代码语言:txt
复制
  姓名  语文成绩  数学成绩  英语成绩  分数
0  张三    80    75    90  10
1  李四    90    85    80  20
2  王五    85    95    75  10
3  赵六    70    80    85  10

在这个示例中,我们使用了三个条件来判断每个学生的语文、数学和英语成绩是否大于80,然后将条件转换为0或1的整数,并相加得到每个学生的分数。最后,将分数添加到DataFrame中作为新的一列。

这种方法避免了使用for循环,而是利用了pandas的条件筛选和向量化操作的优势,提高了计算效率。在实际应用中,可以根据具体需求和条件设置来计算每一行的分数。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

用Python玩转Excel | 多表联合操作

在日常工作中,经常会遇到需要多个工作表联合操作的情况。...比如,要过滤工作表A中的数据,但过滤条件在工作表B中,如果这些工作表都在同一个工作簿中,那么Excel提供了相应的方法进行操作;但如果这些工作表分布于不同的工作簿中,Excel就无能为力了,此时只能先将不同工作簿中的工作表整理到一个新的工作簿中...使用Pandas则无须担心多个工作簿、多个工作表的情况,Pandas可以轻松将多个工作簿中的任意工作表读入,然后一同处理。...假设我们有三个表格,分别存放了学生的名字、学习的年龄、学生的分数三个Excel文件。并且三个表格中每一行数据都是相互对应的。现在我们想要获取年龄大于20岁且分数大于60分的学生的姓名。...合并完成之后,通过条件轻松过滤满我们想要的数据了。

77610

1000+倍!超强Python『向量化』数据处理提速攻略

将整个Series作为参数传递到函数中,而不是对每一行。 但没有成功。if语句试图确定Series作为一个整体的真实性,而不是比较Series中的每个元素,所以这是错误的。...根据经验,你需要为每个return语句设置n个条件,这样就可以将所有布尔数组打包到一个条件中,以返回一个选项。...向量化所需要的所有函数都是在同一行上比较的值,这可以使用pandas.shift()实现! 确保你的数据正确排序,否则你的结果就没有意义! 很慢!...为了解决这个问题,我们对Pandas中的一个series使用.shift()将前一行移到相同的级别。一旦它们被转移到相同的级别,我就可以使用np.select()执行相同的条件向量化方法了!...因此,如果你有一个4核的i7,你可以将你的数据集分成4块,将你的函数应用到每一块,然后将结果合并在一起。注意:这不是一个很好的选择! Dask是在Pandas API中工作的一个不错的选择。

6.8K41
  • 统计师的Python日记【第5天:Pandas,露两手】

    本文是【统计师的Python日记】第5天的日记 回顾一下: 第1天学习了Python的基本页面、操作,以及几种主要的容器类型; 第2天学习了python的函数、循环和条件、类。...数据导出 ---- 统计师的Python日记【第5天:Pandas,露两手】 前言 根据我的Python学习计划: Numpy → Pandas → 掌握一些数据清洗、规整、合并等功能 → 掌握类似与SQL...丢弃缺失值 两种方法可以丢弃缺失值,比如第四天的日记中使用的的城市人口数据: ? 将带有缺失的行丢弃掉: ? 这个逻辑是:“一行中只要有一个格缺失,这行就要丢弃。”...这个例子中索引有两层,国家和年份,来学习一些简单的操作。 1. 用层次索引选取子集: ? ? 选取多个子集呢? ? 2. 自定义变量名 自定义变量名的好处很多,可以更方便的对数据进行选择。...在实际中,更可能是某种乱码,解决这种特殊分隔符,用 sep= 即可。 ? 忽略红色背景的部分。 还有一种情况是开头带有注释的: ? 使用 skiprows= 就可以指定要跳过的行: ?

    3K70

    这几个方法颠覆你对Pandas缓慢的观念!

    ▍pandas数据的循环操作 仍然基于上面的数据,我们想添加一个新的特征,但这个新的特征是基于一些时间条件的,根据时长(小时)而变化,如下: ?....iterrows为DataFrame中的每一行产生(index,series)这样的元组。...这个特定的操作就是矢量化操作的一个例子,它是在Pandas中执行的最快方法。 但是如何将条件计算应用为Pandas中的矢量化运算?...一个技巧是根据你的条件选择和分组DataFrame,然后对每个选定的组应用矢量化操作。 在下一个示例中,你将看到如何使用Pandas的.isin()方法选择行,然后在向量化操作中实现上面新特征的添加。...虽然Pandas系列是一种灵活的数据结构,但将每一行构建到一个系列中然后访问它可能会很昂贵。 5.

    2.9K20

    还在抱怨pandas运行速度慢?这几个方法会颠覆你的看法

    ▍pandas数据的循环操作 仍然基于上面的数据,我们想添加一个新的特征,但这个新的特征是基于一些时间条件的,根据时长(小时)而变化,如下: ?....iterrows为DataFrame中的每一行产生(index,series)这样的元组。...这个特定的操作就是矢量化操作的一个例子,它是在Pandas中执行的最快方法。 但是如何将条件计算应用为Pandas中的矢量化运算?...一个技巧是根据你的条件选择和分组DataFrame,然后对每个选定的组应用矢量化操作。 在下一个示例中,你将看到如何使用Pandas的.isin()方法选择行,然后在向量化操作中实现上面新特征的添加。...虽然Pandas系列是一种灵活的数据结构,但将每一行构建到一个系列中然后访问它可能会很昂贵。 5.

    3.5K10

    再见 for 循环!pandas 提速 315 倍!

    这些都是一次产生一行的生成器方法,类似scrapy中使用的yield用法。 .itertuples为每一行产生一个namedtuple,并且行的索引值作为元组的第一个元素。....iterrows为DataFrame中的每一行产生(index,series)这样的元组。 在这个例子中使用.iterrows,我们看看这使用iterrows后效果如何。...如果你不基于一些条件,而是可以在一行代码中将所有电力消耗数据应用于该价格:df ['energy_kwh'] * 28,类似这种。...那么这个特定的操作就是矢量化操作的一个例子,它是在pandas中执行的最快方法。 但是如何将条件计算应用为pandas中的矢量化运算?...一个技巧是:根据你的条件,选择和分组DataFrame,然后对每个选定的组应用矢量化操作。 在下面代码中,我们将看到如何使用pandas的.isin()方法选择行,然后在矢量化操作中实现新特征的添加。

    2.8K20

    python数据分析——数据的选择和运算

    例如,使用.loc和.iloc可以根据行标签和行号来选取数据,而.query方法则允许我们根据条件表达式来筛选数据。 在数据选择的基础上,数据运算则是进一步挖掘数据内在规律的重要手段。...Python中的NumPy库提供了高效的多维数组对象及其上的运算功能,使得大规模的数值计算变得简单快捷。通过NumPy,我们可以进行向量化运算,避免了Python原生循环的低效性。...merge()是Python最常用的函数之一,类似于Excel中的vlookup函数,它的作用是可以根据一个或多个键将不同的数据集链接起来。...: 四、数据运算 pandas中具有大量的数据计算函数,比如求计数、求和、求平均值、求最大值、最小值、中位数、众数、方差、标准差等。...非空值计数 【例】对于存储在该Python文件同目录下的某电商平台销售数据product_sales.csv,形式如下所示,请利用Python对数据读取,并计算数据集每列非空值个数情况。

    19310

    Pandas的apply方法的应用练习

    1.使用自定义函数的原因  Pandas虽然提供了大量处理数据的API,但是当提供的API无法满足需求的时候,这时候就需要使用自定义函数来解决相关的问题  2....'列中,然后使用apply方法将该函数应用于DataFrame的每一行 # 编写函数将学生成绩相加 def calculate_overall_score(row): row['Overall...Score'] + row['English Score'] + row['Science Score'] return row # 使用apply方法将该函数应用于DataFrame的每一行...假设有一个名为data的DataFrame,其中包含以下列: name:字符串类型,表示姓名 age:整数类型,表示年龄 gender:字符串类型,表示性别 score:浮点数类型,表示分数 请自定义一个函数...my_function,它接受DataFrame的一行作为参数,并根据某些条件修改该行的值 将年龄大于等于18的人的性别修改为”已成年“; 在Seris中使用apply方法 def my_function

    11210

    DataFrame和Series的使用

    # 查看df的dtypes属性,获取每一列的数据类型 df.dtypes df.info() Pandas与Python常用数据类型对照 加载筛选数据 df根据列名加载部分列数据:加载一列数据,通过df...df按行加载部分数据:先打印前5行数据 观察第一列 print(df.head()) 最左边一列是行号,也就是DataFrame的行索引 Pandas默认使用行号作为行索引。...loc方法传入行索引,来获取DataFrame的部分数据(一行,或多行) df.loc[0] df.loc[99] df.loc[last_row_index] iloc : 通过行号获取行数据 iloc...] df.iloc[[行],[列]] df.loc[:,['country','year','pop']] # 获取全部的行,但每一行的列内容接受三个 df.iloc[:,[0,2,4,-1]] df.loc...,求平均,求每组数据条目数(频数)等 再将每一组计算的结果合并起来 可以使用DataFrame的groupby方法完成分组/聚合计算 df.groupby(by='year')[['lifeExp','

    10910

    快速介绍Python数据分析库pandas的基础知识和代码示例

    选择 在训练机器学习模型时,我们需要将列中的值放入X和y变量中。...通常回根据一个或多个列的值对panda DataFrame进行排序,或者根据panda DataFrame的行索引值或行名称进行排序。 例如,我们希望按学生的名字按升序排序。...我们将调用pivot_table()函数并设置以下参数: index设置为 'Sex',因为这是来自df的列,我们希望在每一行中出现一个唯一的值 values值为'Physics','Chemistry...使用max()查找每一行和每列的最大值 # Get a series containing maximum value of each row max_row = df.max(axis=1) ?...类似地,我们可以使用df.min()来查找每一行或每列的最小值。 其他有用的统计功能: sum():返回所请求的轴的值的总和。默认情况下,axis是索引(axis=0)。

    8.1K20

    join查询可以⽆限叠加吗?MySQL对join查询有什么限制吗?

    外层循环遍历驱动表(通常是数据量较小的表)的每一行,对于驱动表的每一行,内层循环遍历被驱动表的所有行,将满足连接条件的行组合起来作为结果集。...-- 外层循环遍历 `t1` 表的每一行,对于 `t1` 表中的每一行数据,内层循环会遍历 `t2` 表的所有行,检查 `t1.id` 和 `t2.id` 是否相等,如果相等则将这两行数据组合起来添加到结果集中...外层循环仍然遍历驱动表的每一行,对于驱动表的每一行,通过被驱动表上的索引快速定位到满足连接条件的行,而不需要像普通嵌套循环连接那样遍历被驱动表的所有行。...-- 对于 `t1` 表中的每一行,根据 `t1.id` 的值,通过 `t2` 表的 `id` 索引快速定位到 `t2` 表中满足 `t2.id = t1.id` 的行,将这两行数据组合起来添加到结果集中...该算法会将驱动表的数据分块读入到内存的 join buffer 中,然后将被驱动表的每一行与 join buffer 中的所有行进行比较,找出满足连接条件的行。

    5010

    高逼格使用Pandas加速代码,向for循环说拜拜!

    前言 使用Pandas dataframe执行数千甚至数百万次计算仍然是一项挑战。你不能简单的将数据丢进去,编写Python for循环,然后希望在合理的时间内处理数据。...现在让我们建立一个标准线,用Python for循环来测量我们的速度。我们将通过循环遍历每一行来设置要在数据集上执行的计算,然后测量整个操作的速度。...我们编写了一个for循环,通过循环dataframe对每一行应用函数,然后测量循环的总时间。 在i7-8700k计算机上,循环运行5次平均需要0.01345秒。...然而,当我们在Python中对大范围的值进行循环时,生成器往往要快得多。 Pandas的 .iterrows() 函数在内部实现了一个生成器函数,该函数将在每次迭代中生成一行Dataframe。...更准确地说,.iterrows() 为DataFrame中的每一行生成(index, Series)的对(元组)。

    5.5K21

    教程 | 基于Keras的LSTM多变量时间序列预测

    选自machinelearningmastery 机器之心编译 参与:朱乾树、路雪 长短期记忆循环神经网络等几乎可以完美地模拟多个输入变量的问题,这为时间序列预测带来极大益处。...本文介绍了如何在 Keras 深度学习库中搭建用于多变量时间序列预测的 LSTM 模型。 诸如长短期记忆(LSTM)循环神经网络的神经神经网络几乎可以无缝建模具备多个输入变量的问题。...因此,我们需要删除第一行数据。在数据集中还有几个零散的「NA」值,我们现在可以用 0 值标记它们。 以下脚本用于加载原始数据集,并将日期时间信息解析为 Pandas DataFrame 索引。...你可以探索的一些替代方案包括: 根据过去一天的天气情况和污染状况,预测下一个小时的污染状况。 根据过去一天的天气情况和污染状况以及下一个小时的「预期」天气条件,预测下一个小时的污染状况。...我们将预测与测试数据集相结合,并调整测试数据集的规模。我们还用预期的污染指数来调整测试数据集的规模。 通过初始预测值和实际值,我们可以计算模型的误差分数。

    3.9K80

    最全攻略:数据分析师必备Python编程基础知识

    4.1 For循环 下面是一个for循环的例子, i用于指代一个可迭代对象中a中的一个元素,for循环写好条件后以冒号结束,并换行缩进,第二行是针对每次循环执行的语句,这里是打印列表a中的每一个元素。...while循环可以通过条件制定循环次数,例如通过计数器来终止掉循环,如下所示,计数器count每循环一次自增1,但count为5时,while条件为假,终止循环。...Numpy的执行效率要比Python自带的数据结构要高效的多,在Numpy的基础上,研究者们开发了大量用于统计学习、机器学习等科学计算的框架,基于Numpy的高效率,这些计算框架具备了较好的实用性。...05 pandas 读取结构化数据 Numpy中的多维数组、矩阵等对象具备极高的执行效率,但是在商业数据分析中,我们不仅需要一堆数据,还需要了解各行、列的意义,同时会有针对结构化数据的相关计算,这些是Numpy...DataFrame即是我们常见的二维数据表,包含多个变量(列)和样本(行),通常称为数据框;Series是一个一维结构的序列,会包含指定的索引信息,可以视作是DataFrame中的一列或一行,操作方法与

    4.6K21

    python推荐系统实现(矩阵分解来协同过滤)|附代码数据

    首先,我们使用numpy的转置函数来触发矩阵,使每一列变成一行。 这只是使数据更容易处理,它不会改变数据本身。在矩阵中,每个电影有15个唯一的值代表该电影的特征。...第一步是从其他电影中减去这部电影的属性。这一行代码从矩阵的每一行中分别减去当前的电影特征。这给了我们当前电影和数据库中其他电影之间的分数差异。...您也可以使用四个循环来一次减去一个电影,但使用numpy,我们可以在一行代码中完成。第二步是取我们在第一步计算出的差值的绝对值,numpy的ABS函数给我们绝对值,这只是确保任何负数出来都是正值。...在这一点上,我们完成了计算。我们只是将计算得分保存回电影列表中,以便我们能够打印每部电影的名称。在第五步中,我们按照我们计算的差异分数对电影列表进行排序,以便在列表中首先显示最少的不同电影。...这里pandas提供了一个方便的排序值函数。最后,在第六步中,我们打印排序列表中的前五个电影。这些是与当前电影最相似的电影。 好的,我们来运行这个程序。我们可以看到我们为这部电影计算的15个属性。

    57400

    python推荐系统实现(矩阵分解来协同过滤)|附代码数据

    首先,我们使用numpy的转置函数来触发矩阵,使每一列变成一行。 这只是使数据更容易处理,它不会改变数据本身。在矩阵中,每个电影有15个唯一的值代表该电影的特征。...第一步是从其他电影中减去这部电影的属性。这一行代码从矩阵的每一行中分别减去当前的电影特征。这给了我们当前电影和数据库中其他电影之间的分数差异。...您也可以使用四个循环来一次减去一个电影,但使用numpy,我们可以在一行代码中完成。第二步是取我们在第一步计算出的差值的绝对值,numpy的ABS函数给我们绝对值,这只是确保任何负数出来都是正值。...在这一点上,我们完成了计算。我们只是将计算得分保存回电影列表中,以便我们能够打印每部电影的名称。在第五步中,我们按照我们计算的差异分数对电影列表进行排序,以便在列表中首先显示最少的不同电影。...这里pandas提供了一个方便的排序值函数。最后,在第六步中,我们打印排序列表中的前五个电影。这些是与当前电影最相似的电影。 好的,我们来运行这个程序。我们可以看到我们为这部电影计算的15个属性。

    84910

    python推荐系统实现(矩阵分解来协同过滤)

    首先,我们使用numpy的转置函数来触发矩阵,使每一列变成一行。 这只是使数据更容易处理,它不会改变数据本身。在矩阵中,每个电影有15个唯一的值代表该电影的特征。...第一步是从其他电影中减去这部电影的属性。这一行代码从矩阵的每一行中分别减去当前的电影特征。这给了我们当前电影和数据库中其他电影之间的分数差异。...您也可以使用四个循环来一次减去一个电影,但使用numpy,我们可以在一行代码中完成。第二步是取我们在第一步计算出的差值的绝对值,numpy的ABS函数给我们绝对值,这只是确保任何负数出来都是正值。...在这一点上,我们完成了计算。我们只是将计算得分保存回电影列表中,以便我们能够打印每部电影的名称。在第五步中,我们按照我们计算的差异分数对电影列表进行排序,以便在列表中首先显示最少的不同电影。...这里pandas提供了一个方便的排序值函数。最后,在第六步中,我们打印排序列表中的前五个电影。这些是与当前电影最相似的电影。 好的,我们来运行这个程序。我们可以看到我们为这部电影计算的15个属性。

    1.5K20

    python机器学习:推荐系统实现(以矩阵分解来协同过滤)

    目标是让每一步的成本函数更接近于零。我们将使用的函数称为fmin_cg。它搜索使函数返回最小可能输出的输入。它由SciPy库提供。最后,fmin_cg函数将循环数百次,直到我们得到尽可能小的代价。...首先,我们使用numpy的转置函数来触发矩阵,使每一列变成一行。 这只是使数据更容易处理,它不会改变数据本身。在矩阵中,每个电影有15个唯一的值代表该电影的特征。...第一步是从其他电影中减去这部电影的属性。这一行代码从矩阵的每一行中分别减去当前的电影特征。这给了我们当前电影和数据库中其他电影之间的分数差异。...您也可以使用四个循环来一次减去一个电影,但使用numpy,我们可以在一行代码中完成。第二步是取我们在第一步计算出的差值的绝对值,numpy的ABS函数给我们绝对值,这只是确保任何负数出来都是正值。...在第五步中,我们按照我们计算的差异分数对电影列表进行排序,以便在列表中首先显示最少的不同电影。这里pandas提供了一个方便的排序值函数。最后,在第六步中,我们打印排序列表中的前五个电影。

    1.5K20

    sql题目pandas解法(01):筛选、all、any常用技巧

    本文大部分的解题过程尽可能使用 pandas 中最基础的入门操作完成,涉及的知识点基本在专栏中的前15节内容中有详尽讲解。 sql 题目不就是表连接+子查询?...本文不会提及 Sql 的解决方法,但是每个题目在源码中都保留了 Sql 语句 ---- 把多个表整理成一个表 首先,我使用 pandas 专栏第37节中的通用方法,按照前面的数据关系图,设置 setting.xlsx...文件即可: 可能你会看不懂,如下是与数据关系图的对比: ---- 导入包如下: 行3:导入通用模块(这是我们自定义的,可以在不同项目中快速使用) 加载数据,并根据 setting 表把多个表关联起来...: 行3:使用 helper.auto_merge ,根据 setting 表的配置,自动把多个表给连接起来 最终结果是一个总成绩表,每行表示某学生(SId、Sname)某科目(CId、Cname)的考试成绩...notna(),得到整个表的 bool 值 通过 all 或 any 得到一列 bool,其中的参数 axis 非常重要,axis=1,每一行得到一个bool值 all 表示一堆的 bool 中是否全是

    1.4K20

    算法金 | 推导式、生成器、向量化、map、filter、reduce、itertools,再见 for 循环

    大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」不要轻易使用 For 循环For 循环,老铁们在编程中经常用到的一个基本结构,特别是在处理列表...只要是能通过一行表达式解决的问题,都可以考虑用列表推导式。它不仅能简化代码,还能减少编写错误的机会。示例代码来个更实际的例子,假设我们要从一组数字中筛选出所有偶数,并计算它们的三次方。...这个函数就像它的名字那样,专门用来筛选东西,特别适合从一堆数据中过滤出我们需要的那部分。基本用法filter() 函数的作用是从一个序列中过滤出符合条件的元素,形成一个新的迭代器。...示例代码来看一个实用的例子,比如我们要根据一列的条件快速过滤数据:# 创建一个较大的 DataFramelarge_df = pd.DataFrame({ 'Age': [22, 45, 18,...并行处理在处理大规模数据或需要高性能计算时,单纯依靠向量化操作有时还不够,这时并行处理就闪亮登场了。并行处理能让我们把任务分散到多个处理器上,实现真正的同时执行,大幅提升效率。

    13000
    领券