首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在Excel中将某一列的格式通过数据分列彻底变为文本格式

背景 我们平常使用excel的时候,都是选中一列,然后直接更改它的格式,但是这种方式并不能彻底改变已有数据的原格式,如下图中的5592689这一个CELL中的数据,尽管我们将整个列都更改为文本类型,但实际上它这个数据仍然是数值类型...,在很多场景下不能满足我们的需求,如数据库在导入Excel表格时,表格中的列数据需要文本形式,如果不是文本形式,导入的数据在数据库中会出现错误(不是想要的数据,如789 数据库中为789.0)。...数据分列 如何真正的将整列数据都更改为文本格式,我们就需要用的数据分列的功能。...第一步:选中要修改的列,点击上方数据,找分列后点击分列  第二步:点击分列 第三步:点击下一步 第四步:点击下一步,选择文本 第五步:确认之后,检查数据,会发现数字那一个CELL的左上角有一个小箭头

1.5K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    强烈推荐Pandas常用操作知识大全!

    as plt # 如果你的设备是配备Retina屏幕的mac,可以在jupyter notebook中,使用下面一行代码有效提高图像画质 %config InlineBackend.figure_format...,在这个5个数据上取均值 df['收盘价(元)'].rolling(5).mean() 数据修改 # 删除最后一行 df = df.drop(labels=df.shape[0]-1) # 添加一行数据...pd.read_html(url) # 解析html URL,字符串或文件,并将表提取到数据帧列表 pd.read_clipboard() # 获取剪贴板的内容并将其传递给 read_table()...在每行上应用功能 数据合并 df1.append(df2) # 将df2添加 df1的末尾 (各列应相同) pd.concat([df1, df2],axis...返回均值的所有列 df.corr() # 返回DataFrame中各列之间的相关性 df.count() # 返回非空值的每个数据帧列中的数字 df.max()

    15.9K20

    yyds!1w 字的 pandas 核心操作知识大全。

    ,在这个5个数据上取均值 df['收盘价(元)'].rolling(5).mean() 数据修改 # 删除最后一行 df = df.drop(labels=df.shape[0]-1) # 添加一行数据...['r_time'] = pd.to_datetime(df_jj2yyb['cTime']) # 时间格式转时间戳 dtime = pd.to_datetime(df_jj2yyb['r_time'...pd.read_html(url) # 解析html URL,字符串或文件,并将表提取到数据帧列表 pd.read_clipboard() # 获取剪贴板的内容并将其传递给 read_table()...在每行上应用功能 数据合并 df1.append(df2) # 将df2添加 df1的末尾 (各列应相同) pd.concat([df1, df2],axis=...df.corr() # 返回DataFrame中各列之间的相关性 df.count() # 返回非空值的每个数据帧列中的数字 df.max() # 返回每列中的最高值

    14.8K30

    帮助数据科学家理解数据的23个pandas常用代码

    df.info() (5)基本的数据集统计 print(df.describe()) (6)在表中打印数据帧 print(tabulate(print_table,headers= headers...(12)将对象类型转换为FLOAT pd.to_numeric(df [“feature_name”],errors='coerce') 将对象类型转换为数值,以便能够执行计算(如果它们是字符串的话)。...(13)将数据帧转换为NUMPY数组 df.as_matrix() (14)获得数据帧的前N行 df.head(n) (15)按特征名称获取数据 df.loc [FEATURE_NAME]...数据帧操作 (16)将函数应用于数据帧 这个将数据帧的“height”列中的所有值乘以2 df["height"].apply(lambda height:2 * height) 或 def multiply...选择“size”列的第一行 view source df.loc([0],['size'])

    2K40

    Pandas 秘籍:6~11

    head方法,以在单个数据帧中将每个组的第一行放在一起。...更多 为了帮助进一步理解stack/unstack,让我们将它们用于转置college数据帧。 在这种情况下,我们使用矩阵转置的精确数学定义,其中新行是原始数据矩阵的旧列。...merge方法提供了类似 SQL 的功能,可以将两个数据帧结合在一起。 将新行追加到数据帧 在执行数据分析时,创建新列比创建新行更为常见。...在步骤 4 中,我们必须将join的类型更改为outer,以包括所传递的数据帧中所有在调用数据帧中不存在索引的行。 在步骤 5 中,传递的数据帧的列表不能有任何共同的列。...第 4 步创建一个特殊的额外数据帧来容纳仅包含日期时间组件的列,以便我们可以在第 5 步中使用to_datetime函数将每一行立即转换为时间戳。

    34K10

    PySpark UD(A)F 的高效使用

    举个例子,假设有一个DataFrame df,它包含10亿行,带有一个布尔值is_sold列,想要过滤带有sold产品的行。...这意味着在UDF中将这些列转换为JSON,返回Pandas数据帧,并最终将Spark数据帧中的相应列从JSON转换为复杂类型 [2enpwvagkq.png] 5.实现 将实现分为三种不同的功能: 1)...selects.append(column) return df.select(*selects) 函数complex_dtypes_to_json将一个给定的Spark数据帧转换为一个新的数据帧...不同之处在于,对于实际的UDF,需要知道要将哪些列转换为复杂类型,因为希望避免探测每个包含字符串的列。在向JSON的转换中,如前所述添加root节点。...带有这种装饰器的函数接受cols_in和cols_out参数,这些参数指定哪些列需要转换为JSON,哪些列需要转换为JSON。只有在传递了这些信息之后,才能得到定义的实际UDF。

    19.7K31

    十分钟入门 Pandas

    series的字典; 关键点 异构数据; 大小可变; 数据可变; 功能特点 潜在的类是不同类型; 大小可变; 标记轴(行和列); 可对行和列执行算术运算; Panel 定义 三维,大小可变的数组...', 'c', 'd'])} print('Series DataFrame:\n', pd.DataFrame(dict_series)) # 列选择,列添加,列删除 df = pd.DataFrame...# 7、get_dummies() 返回具有单热编码值的数据帧(DataFrame)。...')) # 数据帧以拉伸页面 """ 索引与数据选择 """ # 1、.loc(),基于标签 # 2、.iloc(),基于整数 # 3、.ix(),基于标签和数据 dataFrame = pd.DataFrame...()) # 创建时间戳 print('创建时间戳:\n', pd.Timestamp('2018-11-11')) # 转换为时间戳 print('转换时间戳:\n', pd.to_datetime([

    3.7K30

    十分钟入门Pandas

    的字典; 关键点 异构数据; 大小可变; 数据可变; 功能特点 潜在的类是不同类型; 大小可变; 标记轴(行和列); 可对行和列执行算术运算; Panel 定义 三维,大小可变的数组; 关键点...', 'c', 'd'])} print('Series DataFrame:\n', pd.DataFrame(dict_series)) # 列选择,列添加,列删除 df = pd.DataFrame...# 7、get_dummies() 返回具有单热编码值的数据帧(DataFrame)。...')) # 数据帧以拉伸页面 """ 索引与数据选择 """ # 1、.loc(),基于标签 # 2、.iloc(),基于整数 # 3、.ix(),基于标签和数据 dataFrame = pd.DataFrame...()) # 创建时间戳 print('创建时间戳:\n', pd.Timestamp('2018-11-11')) # 转换为时间戳 print('转换时间戳:\n', pd.to_datetime([

    4K30

    【文件读取】文件太大怎么办?

    open 一行一行读,一行一行执行对应的操作 freader = open(filename, 'rb') while True: try: line = freader.readline...= pd.read_csv(filename, iterator=True) # 每次读取size大小的块,返回的是dataframe data = reader.get_chunk(size) 修改列的类型...改变每一列的类型,从而减少存储量 对于label或者类型不多的列(如性别,0,1,2),默认是int64的,可以将列的类型转换为int8 对于浮点数,默认是float64,可以转换为float32 对于类别型的列...(arr) # 计算原始数据大小GB print(data.memory_usage().sum()/(1024**3)) # 将label的int64转变为int8 data['0'] = pd.to_numeric...**3)) # 将float64转变为float32 for i in range(6, 246): data[str(i)] = pd.to_numeric(data[str(i)], downcast

    2.7K10

    精通 Pandas 探索性分析:1~4 全

    如我们所见,在跳过最后两行之后,我们创建的上一个数据帧与我们创建的数据帧之间存在差异: df.tail(2) df = pd.read_csv('IMDB.csv', encoding = "ISO-8859...二、数据选择 在本章中,我们将学习使用 Pandas 进行数据选择的高级技术,如何选择数据子集,如何从数据集中选择多个行和列,如何对 Pandas 数据帧或一序列数据进行排序,如何过滤 Pandas 数据帧的角色...在本节中,我们将学习从 Pandas 数据帧过滤行和列的方法,并将介绍几种方法来实现此目的。...我们可以使用它来将列中的所有值转换为大写。 我们通过在序列中调用str.upper来实现。...从 Pandas 数据帧中删除列 在本节中,我们将研究如何从 Pandas 的数据集中删除列或行。 我们将详细了解drop()方法及其参数的功能。

    28.2K10

    别找了,这是 Pandas 最详细教程了

    本文转自『机器之心编译』(almosthuman2014) Python 是开源的,它很棒,但是也无法避免开源的一些固有问题:很多包都在做(或者在尝试做)同样的事情。...检查数据 ? Gives (#rows, #columns) 给出行数和列数 data.describe() 计算基本的统计数据 查看数据 data.head(3) 打印出数据的前 3 行。...更新数据 data.loc[8, column_1 ] = english 将第八行名为 column_1 的列替换为「english」 在一行代码中改变多列的值 好了,现在你可以做一些在 excel...column_3 ]) 关联三列只需要一行代码 分组 一开始并不是那么简单,你首先需要掌握语法,然后你会发现你一直在使用这个功能。...reset_index() 会将数据重构成一个表。 ? 正如前面解释过的,为了优化代码,在一行中将你的函数连接起来。

    2K20

    Pandas 秘籍:1~5

    在视觉上,Pandas 数据帧的输出显示(在 Jupyter 笔记本中)似乎只不过是由行和列组成的普通数据表。 隐藏在表面下方的是三个组成部分-您必须具备的索引,列和数据(也称为值)。...准备 以下是排序列的简单指南: 将每列分为离散列或连续列 在离散列和连续列中将公共列分组 将最重要的列组首先放置在分类列之前,然后再放置连续列 本秘籍向您展示如何使用此指南排序各列。...分类列通常将是np.object或pd.Categorical类型。 步骤 5 确保同时代表这两种类型。 在第 4 步和第 5 步中,输出数据帧均带有T属性。 这简化了具有许多列的数据帧的可读性。...在本章中,我们将介绍以下主题: 选择序列数据 选择数据帧的行 同时选择数据帧的行和列 同时通过整数和标签和选择数据 加速标量选择 以延迟方式对行切片 按词典顺序切片 介绍 序列或数据帧中数据的每个维度都通过索引对象标记...重要的是在步骤 1 中删除丢失的值,因为where方法最终将在以后的步骤中将其替换为有效数字。 第 2 步中的摘要统计信息为我们提供了一些直观的方法来限定数据上限。

    37.6K10

    pandas

    ) DataFrame的任意一行或者一列就是一个Series对象 创建Series对象:pd.Series(data,index=index)   其中data可以是很多类型: 一个列表--------...,代表不会导出第一行,也就是列头 读写文件注意 df.to_excel(writer, sheet_name='逐日流量', index=False) # header = 0 不要最顶上一行 pandas...engine='openpyxl', skiprows=1) # 先用都昌运行前的数据测试一下,跳过第一行 也可以设置成跳过多行,跳过其他行等 参考博客 'DataFrame' object has..._append(temp, ignore_index=True) pandas数据转置 与矩阵相同,在 Pandas 中,我们可以使用 .transpose() 方法或 .T 属性来转置 我们的DataFrame...通常情况下, 因为.T的简便性, 更常使用.T属性来进行转置 注意 转置不会影响原来的数据,所以如果想保存转置后的数据,请将值赋给一个变量再保存。

    13010

    NumPy、Pandas中若干高效函数!

    Pandas 适用于以下各类数据: 具有异构类型列的表格数据,如SQL表或Excel表; 有序和无序 (不一定是固定频率) 的时间序列数据; 带有行/列标签的任意矩阵数据(同构类型或者是异构类型); 其他任意形式的统计数据集...、转置(pivot)数据集; 轴的分级标记 (可能包含多个标记); 具有鲁棒性的IO工具,用于从平面文件 (CSV 和 delimited)、Excel文件、数据库中加在数据,以及从HDF5格式中保存...Isin()有助于选择特定列中具有特定(或多个)值的行。...当一个数据帧分配给另一个数据帧时,如果对其中一个数据帧进行更改,另一个数据帧的值也将发生更改。为了防止这类问题,可以使用copy ()函数。...Changed value'# printing data print(new) print(data) select_dtypes() select_dtypes()的作用是,基于dtypes的列返回数据帧列的一个子集

    6.6K20
    领券