首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在pyspark dataframe中动态填充列中的行

,可以使用withColumn函数结合when和otherwise函数来实现。

首先,使用withColumn函数创建一个新的列,并使用when和otherwise函数来定义填充逻辑。when函数接受一个条件表达式和一个值,当条件表达式为真时,将该值填充到新列中;otherwise函数接受一个值,表示当条件表达式为假时,将该值填充到新列中。

以下是一个示例代码:

代码语言:txt
复制
from pyspark.sql import SparkSession
from pyspark.sql.functions import when

# 创建SparkSession
spark = SparkSession.builder.getOrCreate()

# 创建示例DataFrame
data = [("Alice", 25, None),
        ("Bob", 30, "Engineer"),
        ("Charlie", None, "Scientist")]

df = spark.createDataFrame(data, ["Name", "Age", "Profession"])

# 动态填充Age列中的空值
df = df.withColumn("Age", when(df.Age.isNull(), 0).otherwise(df.Age))

# 显示结果
df.show()

在上述示例中,我们使用withColumn函数创建了一个新的列"Age",并使用when和otherwise函数来填充该列中的空值。当Age列的值为null时,将其填充为0;否则保持原值不变。

输出结果如下:

代码语言:txt
复制
+-------+---+----------+
|   Name|Age|Profession|
+-------+---+----------+
|  Alice| 25|      null|
|    Bob| 30|  Engineer|
|Charlie|  0| Scientist|
+-------+---+----------+

这样,我们就实现了在pyspark dataframe中动态填充列中的行的需求。

推荐的腾讯云相关产品和产品介绍链接地址:

  • 腾讯云Spark:https://cloud.tencent.com/product/spark
  • 腾讯云数据仓库(TencentDB for TDSQL):https://cloud.tencent.com/product/tdsql
  • 腾讯云数据湖(TencentDB for Data Lake):https://cloud.tencent.com/product/datalake
  • 腾讯云数据集成(Tencent Data Integration):https://cloud.tencent.com/product/tdi
  • 腾讯云数据传输服务(Tencent Data Transfer):https://cloud.tencent.com/product/dts
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

pythonpandas库DataFrame操作使用方法示例

用pandasDataFrame时选取: import numpy as np import pandas as pd from pandas import Sereis, DataFrame...'w',使用类字典属性,返回是Series类型 data.w #选择表格'w',使用点属性,返回是Series类型 data[['w']] #选择表格'w',返回DataFrame...6所第4,有点拗口 Out[31]: d three 13 data.ix[data.a 5,2:4] #选择'a'中大于5所第3-5(不包括5) Out[32]: c...d three 12 13 data.ix[data.a 5,[2,2,2]] #选择'a'中大于5所第2并重复3次 Out[33]: c c c three 12 12 12 #还可以行数或数跟名列名混着用...(1) #返回DataFrame第一 最近处理数据时发现当pd.read_csv()数据时有时候会有读取到未命名,且该也用不到,一般是索引被换掉后导致,有强迫症看着难受,这时候dataframe.drop

13.4K30
  • SQL转列和转行

    而在SQL面试,一道出镜频率很高题目就是转列和转行问题,可以说这也是一道经典SQL题目,本文就这一问题做以介绍分享。 ? 给定如下模拟数据集,这也是SQL领域经典学生成绩表问题。...01 转列:sum+if 在行转列,经典解决方案是条件聚合,即sum+if组合。...其基本思路是这样长表数据组织结构,同一uid对应了多行,即每门课程一条记录,对应一组分数,而在宽表需要将其变成同一uid下仅对应一 长表,仅有一记录了课程成绩,但在宽表则每门课作为一记录成绩...02 转行:union 转行是上述过程逆过程,所以其思路也比较直观: 记录由一变为多行,字段由多变为单列; 一变多行需要复制,字段由多变单列相当于是堆积过程,其实也可以看做是复制;...这实际上对应一个知识点是:SQL字符串引用用单引号(其实双引号也可以),而字段名称引用则是用反引号 上述用到了where条件过滤成绩为空值记录,这实际是由于原表存在有空值情况,如不加以过滤则在本例中最终查询记录有

    7.1K30

    SQL 转列和转行

    转列,转行是我们开发过程中经常碰到问题。转列一般通过CASE WHEN 语句来实现,也可以通过 SQL SERVER 运算符PIVOT来实现。用传统方法,比较好理解。...但是PIVOT 、UNPIVOT提供语法比一系列复杂SELECT…CASE 语句中所指定语法更简单、更具可读性。下面我们通过几个简单例子来介绍一下转行、转列问题。...这也是一个典型转列例子。...实际,可能支付方式特别多,而且逻辑也复杂很多,可能涉及汇率、手续费等等(曾经做个这样一个),如果支付方式特别多,我们CASE WHEN 会弄出一大堆,确实比较恼火,而且新增一种支付方式,我们还得修改脚本如果把上面的脚本用动态...例如,只需执行上面脚本前加上 EXEC sp_dbcmptlevel Test, 90; 就OK了, Test 是所在数据库名称。

    5.5K20

    Pyspark处理数据带有分隔符数据集

    本篇文章目标是处理在数据集中存在分隔符或分隔符特殊场景。对于Pyspark开发人员来说,处理这种类型数据集有时是一件令人头疼事情,但无论如何都必须处理它。...使用sparkRead .csv()方法读取数据集: #create spark session import pyspark from pyspark.sql import SparkSession...从文件读取数据并将数据放入内存后我们发现,最后一数据在哪里,年龄必须有一个整数数据类型,但是我们看到了一些其他东西。这不是我们所期望。一团糟,完全不匹配,不是吗?...我们已经成功地将“|”分隔(“name”)数据分成两。现在,数据更加干净,可以轻松地使用。...接下来,连接“fname”和“lname”: from pyspark.sql.functions import concat, col, lit df1=df_new.withColumn(‘fullname

    4K30

    动态数组公式:动态获取某首次出现#NA值之前一数据

    标签:动态数组 如下图1所示,在数据中有些为值错误#N/A数据,如果想要获取第一个出现#N/A数据上方数据(图中红色数据,即图2所示数据),如何使用公式解决?...图1 图2 如示例图2所示,可以单元格G2输入公式: =LET(data,A2:E18,i,MIN(IFERROR(BYCOL(data,LAMBDA(x,MATCH(TRUE,ISNA(x),0...如果想要只获取第5#N/A值上方数据,则将公式稍作修改为: =INDEX(LET(data,A2:E18,i,MIN(IFERROR(BYCOL(data,LAMBDA(x,MATCH(TRUE,ISNA...,那么上述公式会自动更新为最新获取值。...自从Microsoft推出动态数组函数后,很多求解复杂问题公式都得到简化,很多看似无法用公式解决问题也很容易用公式来实现了。

    13410

    jupyter 实现notebook显示完整

    jupyter notebook设置显示最大行和及浮点数,head观察时不会省略 jupyter notebookdf.head(50)经常会因为数据太大,行列自动省略,观察数据时不爽!...pd.set_option(‘display.float_format’, lambda x: ‘%.5f’ % x) 欢迎使用Markdown编辑器写博客 补充知识:Jupyter notebook 输出部分显示不全问题...我更换了jupyter主题后(如何更换主题,见上篇博客),输出部分总是显示不全,差两个字符;Github上已经有人提出了这个问题,并有了解决方案,亲测有效。...这个13px,可能有的人改了以后,还是显示不全,可以多试几个数,因为有的人浏览器显示比例不一样 重新运行jupyter notebook,输出部分显示不全问题解决。...以上这篇jupyter 实现notebook显示完整就是小编分享给大家全部内容了,希望能给大家一个参考。

    5.6K20

    PySpark SQL——SQL和pd.DataFrame结合体

    最大不同在于pd.DataFrame对象均为pd.Series对象,而这里DataFrame每一为一个Row对象,每一为一个Column对象 Row:是DataFrame每一数据抽象...drop_duplicates函数功能完全一致 fillna:空值填充 与pandasfillna功能一致,根据特定规则对空值进行填充,也可接收字典参数对各指定不同填充 fill:广义填充 drop...:删除指定 最后,再介绍DataFrame几个通用常规方法: withColumn:创建新或修改已有时较为常用,接收两个参数,其中第一个参数为函数执行后列名(若当前已有则执行修改,否则创建新...select等价实现,二者区别和联系是:withColumn是现有DataFrame基础上增加或修改一,并返回新DataFrame(包括原有其他),适用于仅创建或修改单列;而select准确讲是筛选新...,仅仅是筛选过程可以通过添加运算或表达式实现创建多个新,返回一个筛选新DataFrame,而且是筛选多少列就返回多少列,适用于同时创建多情况(官方文档建议出于性能考虑和防止内存溢出,创建多时首选

    10K20

    使用VBA删除工作表多重复

    标签:VBA 自Excel 2010发布以来,已经具备删除工作表重复功能,如下图1所示,即功能区“数据”选项卡“数据工具——删除重复值”。...图1 使用VBA,可以自动执行这样操作,删除工作表所有数据重复,或者指定重复。 下面的Excel VBA代码,用于删除特定工作表所有所有重复。...如果没有标题,则删除代码后面的部分。...如果只想删除指定(例如第1、2、3重复项,那么可以使用下面的代码: Sub DeDupeColSpecific() Cells.RemoveDuplicates Columns:=Array...(1, 2, 3), Header:=xlYes End Sub 可以修改代码中代表列数字,以删除你想要重复

    11.3K30

    pysparkdataframe操作

    、创建dataframe 3、 选择和切片筛选 4、增加删除 5、排序 6、处理缺失值 7、分组统计 8、join操作 9、空值判断 10、离群点 11、去重 12、 生成新 13、最大最小值...df=df.rename(columns={'a':'aa'}) # spark-方法1 # 创建dataframe时候重命名 data = spark.createDataFrame(data...方法 #如果a中值为空,就用b值填补 a[:-2].combine_first(b[2:]) #combine_first函数即对数据打补丁,用df2数据填充df1缺失值 df1.combine_first...操作,我们得到一个有缺失值dataframe,接下来将对这个带有缺失值dataframe进行操作 # 1.删除有缺失值 clean_data=final_data.na.drop() clean_data.show...(thresh=2).show() # 4.填充缺失值 # 对所有用同一个值填充缺失值 df1.na.fill('unknown').show() # 5.不同用不同填充 df1.na.fill

    10.5K10

    根据数据源字段动态设置报表数量以及宽度

    报表系统,我们通常会有这样需求,就是由用户来决定报表需要显示数据,比如数据源中共有八数据,用户可以自己选择报表显示哪些,并且能够自动调整列宽度,已铺满整个页面。...本文就讲解一下ActiveReports该功能实现方法。 第一步:设计包含所有报表模板,将数据源所有先放置到报表设计界面,并设置你需要宽,最终界面如下: ?...第二步:报表后台代码添加一个Columns属性,用于接收用户选择,同时,报表ReportStart事件添加以下代码: /// /// 用户选择列名称...].Width; // 设置控件坐标 if (tmp == null) { // 设置需要显示第一坐标...源码下载: 动态设置报表数量以及宽度

    4.9K100

    动态代理Android运用

    Android开发动态代理可以用于各种用例,如性能监控、AOP(面向切面编程)和事件处理。本文将深入探讨Android动态代理原理、用途和实际示例。 什么是动态代理?...Android动态代理 Android动态代理通常使用Javajava.lang.reflect.Proxy类来实现。...该类允许你创建一个代理对象,该对象实现了指定接口,并且可以拦截接口方法调用以执行额外逻辑。Android开发,常见用途包括性能监控、权限检查、日志记录和事件处理。...动态代理用途 性能监控 你可以使用动态代理来监控方法执行时间,以便分析应用程序性能。例如,你可以创建一个性能监控代理,每次方法调用前记录当前时间,然后方法调用后计算执行时间。...结论 动态代理是Android开发强大工具之一,它允许你不修改原始对象情况下添加额外行为。性能监控、AOP和事件处理等方面,动态代理都有广泛应用。

    82630

    【疑惑】如何从 Spark DataFrame 取出具体某一

    如何从 Spark DataFrame 取出具体某一?...我们可以明确一个前提:Spark DataFrame 是 RDD 扩展,限于其分布式与弹性内存特性,我们没法直接进行类似 df.iloc(r, c) 操作来取出其某一。...我数据有 2e5 * 2e4 这么多,因此 select 后只剩一大小为 2e5 * 1 ,还是可以 collect 。 这显然不是个好方法!因为无法处理真正大数据,比如很多时。...我对于 SQL 不是很了解,因此这个做法只是构思阶段。...给每一加索引,从0开始计数,然后把矩阵转置,新列名就用索引来做。 之后再取第 i 个数,就 df(i.toString) 就行。 这个方法似乎靠谱。

    4K30

    独家 | PySpark和SparkSQL基础:如何利用Python编程执行Spark(附代码)

    在这篇文章,处理数据集时我们将会使用在PySpark APIDataFrame操作。...= 'ODD HOURS', 1).otherwise(0)).show(10) 展示特定条件下10数据 第二个例子,应用“isin”操作而不是“when”,它也可用于定义一些针对条件。...", "Emily Giffin")].show(5) 5特定条件下结果集 5.3、“Like”操作 “Like”函数括号,%操作符用来筛选出所有含有单词“THE”标题。...5) 分别显示子字符串为(1,3),(3,6),(1,6)结果 6、增加,修改和删除 DataFrame API同样有数据处理函数。...10、缺失和替换值 对每个数据集,经常需要在数据预处理阶段将已存在值替换,丢弃不必要,并填充缺失值。pyspark.sql.DataFrameNaFunction库帮助我们在这一方面处理数据。

    13.6K21

    Java动态代理以及框架应用

    一、静态代理&动态代理 1. 静态代理 我们先假设现在有怎么一个需求,要求你不改动原有代码情况下在所有类方法前后打印日志。...动态代理 讲解动态代理实现之前,我们先来回顾一下对象创建过程。 ? 从上面我们可以看出,创建一个对象并不仅仅是写一 new 这么简单,底层还是隐含了许多信息。...所以JDK,提供了java.lang.reflect.InvocationHandler接口,此外还有一个比较重要类java.lang.reflect.Proxy类。...CGLIB动态代理 CGLIB采用了非常底层字节码技术,其原理是通过目标类(原来类)字节码创建一个新子类,并在子类采用方法拦截技术拦截所有父类方法调用,顺势植入增强代码,所以代理类会将目标类作为自己父类并为其中每个方法创建两个方法...Spring动态代理 2.1 Spring何时使用JDK/CGLIB实现AOP 如果目标对象实现了接口,默认情况下Spring会采用JDK动态代理实现AOP(不过可以通过配置强制使用CGLIB实现

    1.2K20

    PySpark入门】手把手实现PySpark机器学习项目-回归算法

    这篇文章手把手带你入门PySpark,提前感受工业界建模过程! 任务简介 电商,了解用户不同品类各个产品购买力是非常重要!这将有助于他们为不同产品客户创建个性化产品。...在这篇文章,笔者真实数据集中手把手实现如何预测用户不同品类各个产品购买行为。 如果有兴趣和笔者一步步实现项目,可以先根据上一篇文章介绍安装PySpark,并在网站中下载数据。...分析数据类型 要查看Dataframe类型,可以使用printSchema()方法。让我们train上应用printSchema(),它将以树格式打印模式。...预览数据集 PySpark,我们使用head()方法预览数据集以查看Dataframe前n,就像pythonpandas一样。我们需要在head方法中提供一个参数(行数)。..."train" Dataframe成功添加了一个转化后“product_id_trans”,("Train1" Dataframe)。

    8.1K51
    领券