首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用ScottPlot库在.NET WinForms中快速实现大型数据集的交互式显示

前言 在.NET应用开发中数据集的交互式显示是一个非常常见的功能,如需要创建折线图、柱状图、饼图、散点图等不同类型的图表将数据呈现出来,帮助人们更好地理解数据、发现规律,并支持决策和沟通。...本文我们将一起来学习一下如何使用ScottPlot库在.NET WinForms中快速实现大型数据集的交互式显示。...ScottPlot类库介绍 ScottPlot是一个免费、开源(采用MIT许可证)的强大.NET交互式绘图库,能够轻松地实现大型数据集的交互式显示。...将FormsPlot (ScottPlot.WinForms)从工具箱拖到窗体中: 输入以下代码: public partial class LineChart : Form {...double[] logYs = ys.Select(Math.Log10).ToArray(); //将对数缩放的数据添加到绘图中 var sp =

53110
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    在MATLAB中优化大型数据集时通常会遇到的问题以及解决方案

    在MATLAB中优化大型数据集时,可能会遇到以下具体问题:内存消耗:大型数据集可能会占用较大的内存空间,导致程序运行缓慢甚至崩溃。...解决方案:使用稀疏数据结构来压缩和存储大型数据集,如使用稀疏矩阵代替密集矩阵。运行时间:大型数据集的处理通常会花费较长的时间,特别是在使用复杂算法时。...解决方案:使用有效的算法和数据结构,如利用矢量化操作和并行计算来加速处理过程。可以考虑使用MATLAB的Parallel Computing Toolbox来进行并行计算。...维护数据的一致性:在对大型数据集进行修改或更新时,需要保持数据的一致性。解决方案:使用事务处理或版本控制等机制来确保数据的一致性。可以利用MATLAB的数据库工具箱来管理大型数据集。...可以使用MATLAB的特征选择和降维工具箱来帮助处理大型数据集。以上是在MATLAB中优化大型数据集时可能遇到的问题,对于每个问题,需要根据具体情况选择合适的解决方案。

    64191

    在没有训练数据的情况下通过领域知识利用弱监督方法生成NLP大型标记数据集

    在现实世界中开发机器学习(ML)模型的主要瓶颈之一是需要大量手动标记的训练数据。例如,Imagenet数据集由超过1400万手动标记的各种现实的图像组成。...投票模型是将多个LF汇总到单个标签的最简单方法。但是还有更好的方法可以通过从整个M行的各个LF之间的相同结果和不同结果中学习的聚合方法。...由于LFS是程序化标签源,因此我们可以在整个未标记的语料库上运行步骤1和2,生成许多标签并在步骤3中训练的模型可以受益于步骤1和2中创建的更广泛的训练数据集。...Snorkel 提供了一个易于使用的框架,可以汇总多个不同的弱的LFS。 组合多个弱标签的一种方法是仅使用多数投票算法(majority vote),在基准测试中MV确实也是一些数据集的最佳LM。...在两步弱监督方法中结合这些框架,可以在不收集大量手动标记训练数据集的情况下实现与全监督ML模型相媲美的准确性! 引用: Want To Reduce Labeling Cost?

    1.3K30

    nuScenes数据集在OpenPCDet中的使用及其获取

    下载数据 从官方网站上下载数据NuScenes 3D object detection dataset,没注册的需要注册后下载。...注意: 如果觉得数据下载或者创建data infos有难度的,可以参考本文下方 5. 3. 数据组织结构 下载好数据集后按照文件结构解压放置。...其在OpenPCDet中的数据结构及其位置如下,根据自己使用的数据是v1.0-trainval,还是v1.0-mini来修改。...创建data infos 根据数据选择 python -m pcdet.datasets.nuscenes.nuscenes_dataset --func create_nuscenes_infos \...数据获取新途径 如果觉得数据下载或者创建data infos有难度的,可以考虑使用本人处理好的数据 v1.0-mini v1.0-trainval 数据待更新… 其主要存放的结构为 │── v1.0

    5.5K10

    大数据实用组件Hudi--实现管理大型分析数据集在HDFS上的存储

    什么是Hudi Apache Hudi代表Hadoop Upserts anD Incrementals,管理大型分析数据集在HDFS上的存储。Hudi的主要目的是高效减少摄取过程中的数据延迟。...它可以像任何作业一样进一步水平扩展,并将数据集直接存储在HDFS上。 Hudi的作用 上面还是比较抽象的话,接着我们来看下图,更形象的来了解Hudi ?...Hudi机制 存储机制 hudi维护了一个时间轴,记录了在不同时刻对数据集进行的所有操作。 hudi拥有2种存储优化。...根据Uber工程师的实际生产经验,与其他方法相比,将Hudi作为一个三方依赖库嵌入现有Spark管道要更加简单有效。除了Hive之外,Hudi也被设计用于像Presto / Spark这样的计算引擎。...对于非Spark处理系统(例如:Flink,Hive),处理过程可以在各自的系统中完成,然后以Kafka Topics 或者HDFS中间文件的形式发送到Hudi表中。

    5.1K31

    PyTorch 中自定义数据集的读取方法

    显然我们在学习深度学习时,不能只局限于通过使用官方提供的MNSIT、CIFAR-10、CIFAR-100这样的数据集,很多时候我们还是需要根据自己遇到的实际问题自己去搜集数据,然后制作数据集(收集数据集的方法有很多...这里只介绍数据集的读取。 1....自定义数据集的方法: 首先创建一个Dataset类 [在这里插入图片描述] 在代码中: def init() 一些初始化的过程写在这个函数下 def...len() 返回所有数据的数量,比如我们这里将数据划分好之后,这里仅仅返回的是被处理后的关系 def getitem() 回数据和标签补充代码 上述已经将框架打出来了,接下来就是将框架填充完整就行了...mode=='train': self.images=self.images[:int(0.6*len(self.images))] # 将数据集的60%设置为训练数据集合

    93330

    Python 大数据集在正态分布中的应用(附源码)

    前言 在阅读今天分享的内容之前,我们先来简单了解下关于数学中的部分统计学及概率的知识。...通过下图所示,可初步了解下正态分布图的分布状况。 图中所示的百分比即数据落入该区间内的概率大小,由图可见,在正负一倍的sigmam 内,该区间的概率是最大的。...Python 代码实现 该实现方法中共需要传递4个参数: (1)、indicators_path:excel文件的路径 (2)、sheet_name:excel文件路径下对应的sheet的名称 (3)...、all_data_list:数据列表,相当于Python中的list (4)、singal_data:all_data_list中的单个元素 下图为 excel 中的大量数据集: 重点代码行解读 Line3...Line25-30:利用前面所讲到的公式求出箱型图中上下边缘的值,也是该方法的终极目的 使用方法 调用方在调用该函数时只需按规则传入对应的参数,拿到该方法返回的上下边缘值对页面上返回的数据进行区间判断即可

    1.8K20

    在python中构造时间戳参数的方法

    目的&思路 本次要构造的时间戳,主要有2个用途: headers中需要传当前时间对应的13位(毫秒级)时间戳 查询获取某一时间段内的数据(如30天前~当前时间) 接下来要做的工作: 获取当前日期,如2021...-12-16,定为结束时间 设置时间偏移量,获取30天前对应的日期,定为开始时间 将开始时间与结束时间转换为时间戳 2....一个简单易懂的例子 按照上面的思路,时间戳参数创建过程如下 `import datetime today = datetime.datetime.now() # 获取今天时间 print("当前日期是...:50:58.543452,对应的时间戳:1639644658543 找一个时间戳转换网站,看看上述生成的开始日期的时间戳是否与原本日期对应 可以看出来,大致是能对应上的(网上很多人使用round()方法进行了四舍五入...,因为我对精度没那么高要求,所以直接取整了) 需要注意的是:timestamp() 方法默认生成的是10位(秒级)时间戳,如果要转换为13位(毫秒级)的话,把结果*1000才行 补充timedelta的几个参数

    2.8K30

    在python脚本中执行shell命令的方法

    在python脚本中执行shell命令的方法 最近在写python的一些脚本,之前使用python都是在django中使用,可能大部分内容都是偏向于后端开发方面的,最近在写一些脚本的时候,发现了...aaa.sql的文件,文件中的内容是aaa,然后我们来看测试过程 1[root@ /data ]$python 2Python 2.7.15 (default, Nov 29 2018, 13:37...7else: 8 result["result"] = false 9 result["message"] = res 10return Response(result) 如果脚本中是对数据库的一系列操作...,那么利用python和数据库进行交互也就水到渠成了。...第三种方法是使用popen函数 os.popen() 返回的是 file read 的对象,对其进行读取 read() 的操作可以看到执行的输出 1[root@ /data]$python 2Python

    5.3K00

    在PyTorch中构建高效的自定义数据集

    如果运行该python文件,将看到1000、101和122到361之间的值,它们分别指的是数据集的长度,数据集中索引为100的数据以及索引为121到361之间的数据集切片。...实际上,我们还可以包括NumPy或Pandas之类的其他库,并且通过一些巧妙的操作,使它们在PyTorch中发挥良好的作用。让我们现在来看看在训练时如何有效地遍历数据集。...用DataLoader加载数据 尽管Dataset类是创建数据集的一种不错的方法,但似乎在训练时,我们将需要对数据集的samples列表进行索引或切片。...测试集的一种方法是为训练数据和测试数据提供不同的data_root,并在运行时保留两个数据集变量(另外还有两个数据加载器),尤其是在训练后立即进行测试的情况下。...您可以在我的GitHub上找到TES数据集的代码,在该代码中,我创建了与数据集同步的PyTorch中的LSTM名称预测变量(https://github.com/syaffers/tes-names-rnn

    3.6K20

    在机器学习中处理缺失数据的方法

    数据中包含缺失值表示我们现实世界中的数据是混乱的。可能产生的原因有:数据录入过程中的人为错误,传感器读数不正确以及数据处理管道中的软件bug等。 一般来说这是令人沮丧的事情。...但是,在缺少数据点的情况下,通常还存在隐藏的模式。它们可以提供有助于解决你正尝试解决问题的更多信息。...方法 注意:我们将使用Python和人口普查数据集(针对本教程的目的进行修改) 你可能会惊讶地发现处理缺失数据的方法非常多。这证明了这一问题的重要性,也这证明创造性解决问题的潜力很大。...正如前面提到的,虽然这是一个快速的解决方案。但是,除非你的缺失值的比例相对较低(在大多数情况下,删除会使你损失大量的数据。...,你需要寻找到不同的方法从缺失的数据中获得更多的信息,更重要的是培养你洞察力的机会,而不是烦恼。

    2K100

    Python在大数据挖掘中的应用

    ,Python也在不断涌现和迭代着各种最前沿且实用的算法包供用户免费使用, 如:微软开源的回归/分类包LightGBM、FaceBook开源的时序包Prophet、Google开源的神经网络包TensorFlow...上述开源的包中,全部都支持Python。而对于其它语言来讲,上述包并不一定全部支持。由此也可以看到Python在数据挖掘领域中举足轻重的地位。...从数据处理出发,从效率角度将Python及MySQL进行实际对比,展示Python对数据处理的强大能力。 Python对于数据的处理速度均极大的超过了MySQL数据库。...在实际的挖掘项目中,在面临着需要计算几千甚至上万特征值的情况下,通过Python将可以从代码量和运算速度两方面极大提高宽表制作效率,甚至完成传统SQL数据库难以完成的工作。...所以Python在大数据挖掘中运用十分广泛。

    1.4K20

    Python在大数据挖掘中的应用

    ,Python也在不断涌现和迭代着各种最前沿且实用的算法包供用户免费使用, 如:微软开源的回归/分类包LightGBM、FaceBook开源的时序包Prophet、Google开源的神经网络包TensorFlow...上述开源的包中,全部都支持Python。而对于其它语言来讲,上述包并不一定全部支持。由此也可以看到Python在数据挖掘领域中举足轻重的地位。 ?...从数据处理出发,从效率角度将Python及MySQL进行实际对比,展示Python对数据处理的强大能力。 ? Python对于数据的处理速度均极大的超过了MySQL数据库。...在实际的挖掘项目中,在面临着需要计算几千甚至上万特征值的情况下,通过Python将可以从代码量和运算速度两方面极大提高宽表制作效率,甚至完成传统SQL数据库难以完成的工作。...所以Python在大数据挖掘中运用十分广泛。

    1.3K30

    1-24聚合架构第二十五讲:中台里边最关键的设计方法

    每个设计方法都有自己挺独到的一个东西,但是独到的东西一般也都是高度个性化的,其他人需要学的时候,就要理解里边的东西了,不能一知半解,但这样又要求手里握着武林秘籍的人自己出来现身说法,不然真假秘籍可能就满天飞了...中台的关键设计方法是什么?是DDD?是扩展点?是大闭环小闭环?...估计大家听到过不少解释,我个人的理解是,对公共服务的提炼,进而将其模板化成业务能力提供给其他团队,也就是模型化地将服务能力实现“可视化”,这其实跟我之前讲的产品模型高度相似,其提炼过程其实也符合以后要讲的聚合架构的梳理目标...所以,方法论的总结真的是个重要事情,它能够帮助我们把自身的实践经验清晰地传达给别人。...最近我在完整解读央行的金融科技发展规划和银保监会的数字化转型指导意见,里边即提到了中台架构,也提到了企业架构,如果了解的少,是不是会让人觉得有点儿迷糊?

    21930

    优化在 SwiftUI List 中显示大数据集的响应效率

    创建数据集 通过 List 展示数据集 用 ScrollViewReader 对 List 进行包裹 给 List 中的 item 添加 id 标识,用于定位 通过 scrollTo 滚动到指定的位置...在 SwiftUI 中为视图设置显式标识目前有两种方式: 在 ForEach 的构造方法中指定 由于 ForEach 中的视图数量是动态的且是在运行时生成的,因此需要在 ForEach 的构造方法中指定可用来标识子视图的...scrollByUITableView_2022-04-23_19.44.26.2022-04-23 19_46_20 希望 SwiftUI 在之后的版本中能够改善上面的性能问题,这样就可以无需使用非原生方法也能达成好的效果...如果在正式开发中面对需要在 List 中使用大量数据的情况,我们或许可以考虑下述的几种解决思路( 以数据采用 Core Data 存储为例 ): 数据分页 将数据分割成若干页面是处理大数据集的常用方法,...获取若干最新数据,将数据逆向添加入数组 在列表显示后率先移动到最底端(取消动画) 通过 refreshable 调用下一批数据,并继续逆向添加入数组 用类似的思路,还可以实现向下增量读取或者两端增量读取

    9.3K20

    MongoDB聚合索引在实际开发中的应用场景-数据挖掘和推荐

    聚合索引在数据挖掘和推荐系统中也有很多应用。...例如,假设我们有一个包含用户购买记录的集合 purchase,每个文档包含以下字段:user_id:用户IDproduct_id:商品IDpurchase_date:购买日期quantity:购买数量我们可以使用聚合索引来计算商品之间的相似度...首先,我们需要创建一个聚合索引:db.purchase.createIndex({ "product_id": 1 })然后,我们可以使用聚合框架来计算商品之间的相似度:db.purchase.aggregate...ID进行分组,然后通过 $lookup 操作将购买同一商品的用户关联起来,再通过 $group 操作统计每个商品和其它商品之间的购买次数。...最后,通过 $sort 操作将结果按照购买次数降序排列,得到商品之间的相似度。

    95951
    领券