首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在Python机器学习中如何索引、切片和重塑NumPy数组

机器学习中的数据被表示为数组。 在Python中,数据几乎被普遍表示为NumPy数组。 如果你是Python的新手,在访问数据时你可能会被一些python专有的方式困惑,例如负向索引和数组切片。...在本教程中,你将了解在NumPy数组中如何正确地操作和访问数据。 完成本教程后,你将知道: 如何将你的列表数据转换为NumPy数组。 如何使用Pythonic索引和切片访问数据。...[How-to-Index-Slice-and-Reshape-NumPy-Arrays-for-Machine-Learning-in-Python.jpg] 在Python机器学习中如何索引、切片和重塑...[11 22] 3.数组切片 到目前为止还挺好; 创建和索引数组看起来都还很熟悉。 现在我们来进行数组切片,对于Python和NumPy数组的初学者来说,这里可能会引起某些问题。...一维切片 你可以通过':'前后不指定任何索引来访问数组维度中的所有数据。

19.1K90

利用Python进行数据分析(5) NumPy基础: ndarray索引和切片

概念理解 索引即通过一个无符号整数值获取数组里的值。 切片即对数组里某个片段的描述。 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: ?...一维数组的切片 一维数组的切片语法格式为array[index1:index2],意思是从index1索引位置开始,到index2索引(不包括index2)位置结束的一段数组。例如: ?...既然二维数组的索引返回是一维数组,那么就可以按照一维数组的方式访问其中的某个标量了,例如: ? 二维数组的切片 既然二维数组的索引对应的是一维数组,则二维数组的切片是一个由一维数组组成的片段: ?...多维数组 多维数组的索引 在一维数组里,单个索引值返回对应的标量; 在二维数组里,单个索引值返回对应的一维数组; 则在多维数组里,单个索引值返回的是一个纬度低一点的数组,例如 ?...布尔值索引 布尔值索引指的是一个由布尔值组成的数组可以作为一个数组的索引,返回的数据为True值对应位置的值,例如: ? 花式索引 花式索引指的是用整数数组进行索引。例如: ?

79050
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    python全栈开发《46.索引与切片之列表:通过pop删除索引、del删除索引、索引在元组中的特殊性》

    1.pop的功能 通过索引删除并获取到这个索引对应的元素。 2.pop的用法 index:是你希望删除元素的索引。 pop函数会删除列表中这个索引对应的值,并且把这个被删除的值返回回来。...'] 进程已结束,退出代码为 0 3.通过del删除索引 del list[index] 1)直接删除索引,无返回值。.../bin/python /Users/llq/PycharmProjects/pythonlearn/python_list/1.py ['dewei'] 进程已结束,退出代码为 0 4.索引切片在元组中的特殊性...1)元组可以和列表一样获取索引与切片索引。...2)元组函数index和列表用法完全一致。 3)元组无法通过索引修改与删除元素。

    6410

    python数据分析——数据的选择和运算

    在数据分析的领域中,Python以其灵活易用的特性和丰富的库资源,成为了众多数据科学家的首选工具。在Python的数据分析流程中,数据的选择和运算是两个至关重要的步骤。...综上所述,Python在数据分析中的数据选择和运算方面展现出了强大的能力。通过合理的数据选择和恰当的运算处理,我们可以从数据中获取到宝贵的信息和洞见,为决策提供有力的支持。...在NumPy中数组的索引可以分为两大类: 一是一维数组的索引; 二是二维数组的索引。 一维数组的索引和列表的索引几乎是相同的,二维数组的索引则有很大不同。...关于NumPy数组的索引和切片操作的总结,如下表: 【例】利用Python的Numpy创建一维数组,并通过索引提取单个或多个元素。...关键技术: 二维数组索引语法总结如下: [对行进行切片,对列的切片] 对行的切片:可以有start:stop:step 对列的切片:可以有start:stop:step import pandas

    19310

    数据科学 IPython 笔记本 7.5 数据索引和选择

    在第二章中,我们详细介绍了在 NumPy 数组中访问,设置和修改值的方法和工具。...序列中的数据选择 我们在上一节中看到,Series对象在很多方面都像一维 NumPy 数组,并且在许多方面像标准的 Python 字典。...如果我们记住这两个重叠的类比,它将帮助我们理解这些数组中的数据索引和选择的模式。...作为一维数组的序列 Series建立字典式接口上,并通过与 NumPy 数组相同的基本机制,提供数组式的项目选择,即切片,掩码和花式索引。...数据帧中的数据选择 回想一下,DataFrame在很多方面都类似二维或结构化数组,在其它方面莱斯共享相同索引的Series结构的字典。在我们探索此结构中的数据选择时,记住些类比是有帮助的。

    1.7K20

    精通 Pandas:1~5

    NumPy 索引和切片 NumPy 中的数组索引以0开头,例如 Python,Java 和 C++ 之类的语言,而 Fortran,Matlab 和 Octave 的数组索引以1开头。...数据帧的列是序列结构。 可以将其视为序列结构的字典,在该结构中,对列和行均进行索引,对于行,则表示为“索引”,对于列,则表示为“列”。 它的大小可变:可以插入和删除列。...在下一章中,我们将讨论 Pandas 索引的主题。 四、Pandas 的操作,第一部分 – 索引和选择 在本章中,我们将着重于对来自 Pandas 对象的数据进行索引和选择。...这里要学习的关键知识是,多重索引的当前版本要求对标签进行排序,以使较低级别的切片例程正常工作。 为此,您可以利用sortlevel()方法对多重索引中的轴的标签进行排序。...在原始堆叠的数据帧中,group是最高级别。 这是对stack和unstack的完全可逆的调用序列。

    19.2K10

    Pandas 学习手册中文第二版:1~5

    要进行此处理,需要使用一种工具,使我们能够对单维和多维数据进行检索,索引,清理和整齐,整形,合并,切片并执行各种分析,包括沿着数据自动对齐的异类数据。...在下一章中,我们将开始学习 Pandas,从获取 Python 和 Pandas 环境开始,对 Jupyter 笔记本进行概述,然后在深入研究 Pandas Series和DataFrame对象之前对其进行快速介绍...序列与 NumPy 数组相似,但是它的不同之处在于具有索引,该索引允许对项目进行更丰富的查找,而不仅仅是从零开始的数组索引值。 以下从 Python 列表创建一个序列。: 输出包括两列信息。...这种自动对齐方式使数据帧比电子表格或数据库更有能力进行探索性数据分析。 结合在行和列上同时切片数据的功能,这种与数据帧中的数据进行交互和浏览的功能对于查找所需信息非常有效。...创建数据帧期间的行对齐 选择数据帧的特定列和行 将切片应用于数据帧 通过位置和标签选择数据帧的行和列 标量值查找 应用于数据帧的布尔选择 配置 Pandas 我们使用以下导入和配置语句开始本章中的示例

    8.3K10

    NumPy 和 Pandas 数据分析实用指南:1~6 全

    我们继续讨论了如何从基本算术到成熟的线性代数对ndarray对象进行数学运算。 在下一章中,我们将讨论一些重要主题:使用数组对ndarray对象算术和线性代数进行切片,以及采用数组方法和函数。...显式选择元素 如果您知道如何选择 Python 列表的子集,那么您将了解有关ndarray切片的大部分知识。 与索引对象的元素相对应的被索引数组元素在新数组中返回。...我们可以将 pandas 数据帧视为将序列组合在一起以形成表格对象,其中行和列为序列。 我们可以通过多种方式创建数据帧,我们将在此处进行演示。 我们可以给数据帧一个索引。...让我们首先看一下索引排序。 我们可以使用sort_index方法重新排列数据帧的行,以使行索引按顺序排列。 我们还可以通过将sort_index的访问参数设置为1来对列进行排序。...总结 在本章中,我们从索引排序开始,并介绍了如何通过值进行排序。 我们介绍了层次聚类,并用层次索引对序列进行了切片。 最后,我们看到了各种绘图方法并进行了演示。 我们已经走了很长一段路。

    5.4K30

    NumPy使用图解教程「建议收藏」

    NumPy中的数组操作 创建数组 我们可以通过将python列表传入np.array()来创建一个NumPy数组(也就是强大的ndarray)。...数组的切片操作 我们可以像python列表操作那样对NumPy数组进行索引和切片,如下图所示: 聚合函数 NumPy为我们带来的便利还有聚合函数,聚合函数可以将数据进行压缩,统计数组中的一些特征值:...可以将此操作图解为如下所示: 矩阵的切片和聚合 索引和切片功能在操作矩阵时变得更加有用。可以在不同维度上使用索引操作来对数据进行切片。...在我们执行减法后,我们最终得到如下值: 然后我们可以计算向量中各值的平方: 现在我们对这些值求和: 最终得到该预测的误差值和模型质量分数。...电子表格中的每个工作表都可以是自己的变量。python中类似的结构是pandas数据帧(dataframe),它实际上使用NumPy来构建的。 音频和时间序列 音频文件是一维样本数组。

    2.9K30

    一键获取新技能,玩转NumPy数据操作

    除了数据切片和数据切块的功能之外,掌握numpy也使得开发者在使用各数据处理库调试和处理复杂用例时更具优势。 ?...import numpy as np NumPy中的数组操作 创建数组 我们可以通过将python列表传入np.array()来创建一个NumPy数组(也就是强大的ndarray)。...NumPy通过数组广播(broadcasting)知道这种操作需要和数组的每个元素相乘。 数组的切片操作 我们可以像python列表操作那样对NumPy数组进行索引和切片,如下图所示: ?...矩阵的切片和聚合 索引和切片功能在操作矩阵时变得更加有用。可以在不同维度上使用索引操作来对数据进行切片。 ? 我们可以像聚合向量一样聚合矩阵: ?...表和电子表格 电子表格或数据表都是二维矩阵。电子表格中的每个工作表都可以是自己的变量。python中类似的结构是pandas数据帧(dataframe),它实际上使用NumPy来构建的。 ?

    1.7K20

    一键获取新技能,玩转NumPy数据操作

    除了数据切片和数据切块的功能之外,掌握numpy也使得开发者在使用各数据处理库调试和处理复杂用例时更具优势。 ?...import numpy as np NumPy中的数组操作 创建数组 我们可以通过将python列表传入np.array()来创建一个NumPy数组(也就是强大的ndarray)。...NumPy通过数组广播(broadcasting)知道这种操作需要和数组的每个元素相乘。 数组的切片操作 我们可以像python列表操作那样对NumPy数组进行索引和切片,如下图所示: ?...矩阵的切片和聚合 索引和切片功能在操作矩阵时变得更加有用。可以在不同维度上使用索引操作来对数据进行切片。 ? 我们可以像聚合向量一样聚合矩阵: ?...表和电子表格 电子表格或数据表都是二维矩阵。电子表格中的每个工作表都可以是自己的变量。python中类似的结构是pandas数据帧(dataframe),它实际上使用NumPy来构建的。 ?

    1.8K10

    NumSharp的数组切片功能

    如果你没用过NumPy,你可能不知道切片技术有多好用, Python数组允许通过对一定范围对元素进行索引来返回数组的一个切片,其索引操作是这样的:a[start:end:step]。...作为NumSharp的开发人员之一,我将向您展示几个重要的切片用例,并附有C#的示例代码段。首先请注意,由于语言语法的不同,在C#中无法以与Python相同的方式进行索引。...用例:稀疏视图和递归切片 除了对切片的范围指定start和end之外,再通过指定它的步长,就可以创建数组的稀疏视图了。这是一个连C# 8.0新的数组切片语法都没有的功能(据我所知)。...很显然,NumSharp为您做了相应的索引变换,所以您可以使用相对的坐标对切片进行索引。 用例:在无任何额外成本的情况下颠倒元素的顺序 使用值为负数的步长可以高效的反转切片的顺序。...通过在可返回低维子卷的范围符号上使用NumSharp的索引符号进行切片,才使这种分而治之的方法变得可行。

    1.7K30

    一键获取新技能,玩转NumPy数据操作!

    除了数据切片和数据切块的功能之外,掌握numpy也使得开发者在使用各数据处理库调试和处理复杂用例时更具优势。 ?...import numpy as np NumPy中的数组操作 创建数组 我们可以通过将python列表传入np.array()来创建一个NumPy数组(也就是强大的ndarray)。...NumPy通过数组广播(broadcasting)知道这种操作需要和数组的每个元素相乘。 数组的切片操作 我们可以像python列表操作那样对NumPy数组进行索引和切片,如下图所示: ?...矩阵的切片和聚合 索引和切片功能在操作矩阵时变得更加有用。可以在不同维度上使用索引操作来对数据进行切片。 ? 我们可以像聚合向量一样聚合矩阵: ?...表和电子表格 电子表格或数据表都是二维矩阵。电子表格中的每个工作表都可以是自己的变量。python中类似的结构是pandas数据帧(dataframe),它实际上使用NumPy来构建的。 ?

    1.5K30

    安利!这是我见过最好的NumPy图解教程

    除了数据切片和数据切块的功能之外,掌握numpy也使得开发者在使用各数据处理库调试和处理复杂用例时更具优势。 ?...NumPy中的数组操作 创建数组 我们可以通过将python列表传入np.array()来创建一个NumPy数组(也就是强大的ndarray)。...NumPy通过数组广播(broadcasting)知道这种操作需要和数组的每个元素相乘。 数组的切片操作 我们可以像python列表操作那样对NumPy数组进行索引和切片,如下图所示: ?...矩阵的切片和聚合 索引和切片功能在操作矩阵时变得更加有用。可以在不同维度上使用索引操作来对数据进行切片。 ? 我们可以像聚合向量一样聚合矩阵: ?...表和电子表格 电子表格或数据表都是二维矩阵。电子表格中的每个工作表都可以是自己的变量。python中类似的结构是pandas数据帧(dataframe),它实际上使用NumPy来构建的。 ?

    1.7K10

    这是我见过最好的NumPy图解教程!没有之一

    除了数据切片和数据切块的功能之外,掌握numpy也使得开发者在使用各数据处理库调试和处理复杂用例时更具优势。 ?...NumPy中的数组操作 创建数组 我们可以通过将python列表传入np.array()来创建一个NumPy数组(也就是强大的ndarray)。...NumPy通过数组广播(broadcasting)知道这种操作需要和数组的每个元素相乘。 数组的切片操作 我们可以像python列表操作那样对NumPy数组进行索引和切片,如下图所示: ?...矩阵的切片和聚合 索引和切片功能在操作矩阵时变得更加有用。可以在不同维度上使用索引操作来对数据进行切片。 ? 我们可以像聚合向量一样聚合矩阵: ?...表和电子表格 电子表格或数据表都是二维矩阵。电子表格中的每个工作表都可以是自己的变量。python中类似的结构是pandas数据帧(dataframe),它实际上使用NumPy来构建的。 ?

    1.7K40

    图解NumPy,这是理解数组最形象的一份教程了

    除了能对数值数据进行切片(slice)和切块(dice)之外,使用 NumPy 还能为处理和调试上述库中的高级实例带来极大便利。...索引 我们可以我们像对 python 列表进行切片一样,对 NumPy 数组进行任意的索引和切片: ? 聚合 NumPy 还提供聚合功能: ?...矩阵索引 当我们处理矩阵时,索引和切片操作变得更加有用: ? 矩阵聚合 我们可以像聚合向量一样聚合矩阵: ? 我们不仅可以聚合矩阵中的所有值,还可以使用 axis 参数执行跨行或跨列聚合: ?...在更高级的实例中,你可能需要变换特定矩阵的维度。在机器学习应用中,经常会这样:某个模型对输入形状的要求与你的数据集不同。在这些情况下,NumPy 的 reshape() 方法就可以发挥作用了。...电子表格中的每个工作表都可以是它自己的变量。python 中最流行的抽象是 pandas 数据帧,它实际上使用了 NumPy 并在其之上构建。 ? 音频和时间序列 音频文件是样本的一维数组。

    2K20

    图解NumPy,别告诉我你还看不懂!

    除了能对数值数据进行切片(slice)和切块(dice)之外,使用 NumPy 还能为处理和调试上述库中的高级实例带来极大便利。...索引 我们可以我们像对 python 列表进行切片一样,对 NumPy 数组进行任意的索引和切片: ? 聚合 NumPy 还提供聚合功能: ?...矩阵索引 当我们处理矩阵时,索引和切片操作变得更加有用: ? 矩阵聚合 我们可以像聚合向量一样聚合矩阵: ? 我们不仅可以聚合矩阵中的所有值,还可以使用 axis 参数执行跨行或跨列聚合: ?...在更高级的实例中,你可能需要变换特定矩阵的维度。在机器学习应用中,经常会这样:某个模型对输入形状的要求与你的数据集不同。在这些情况下,NumPy 的 reshape() 方法就可以发挥作用了。...电子表格中的每个工作表都可以是它自己的变量。python 中最流行的抽象是 pandas 数据帧,它实际上使用了 NumPy 并在其之上构建。 ? 音频和时间序列 音频文件是样本的一维数组。

    2.1K20

    【图解 NumPy】最形象的教程

    除了能对数值数据进行切片(slice)和切块(dice)之外,使用 NumPy 还能为处理和调试上述库中的高级实例带来极大便利。...索引 我们可以我们像对 python 列表进行切片一样,对 NumPy 数组进行任意的索引和切片: ? 聚合 NumPy 还提供聚合功能: ?...矩阵索引 当我们处理矩阵时,索引和切片操作变得更加有用: ? 矩阵聚合 我们可以像聚合向量一样聚合矩阵: ? 我们不仅可以聚合矩阵中的所有值,还可以使用 axis 参数执行跨行或跨列聚合: ?...在更高级的实例中,你可能需要变换特定矩阵的维度。在机器学习应用中,经常会这样:某个模型对输入形状的要求与你的数据集不同。在这些情况下,NumPy 的 reshape() 方法就可以发挥作用了。...电子表格中的每个工作表都可以是它自己的变量。python 中最流行的抽象是 pandas 数据帧,它实际上使用了 NumPy 并在其之上构建。 ? 音频和时间序列 音频文件是样本的一维数组。

    2.5K31

    图解NumPy,这是理解数组最形象的一份教程了

    除了能对数值数据进行切片(slice)和切块(dice)之外,使用 NumPy 还能为处理和调试上述库中的高级实例带来极大便利。...03 索引 我们可以我们像对 python 列表进行切片一样,对 NumPy 数组进行任意的索引和切片: ? 04 聚合 NumPy 还提供聚合功能: ?...矩阵索引 当我们处理矩阵时,索引和切片操作变得更加有用: ? 5. 矩阵聚合 我们可以像聚合向量一样聚合矩阵: ? 我们不仅可以聚合矩阵中的所有值,还可以使用 axis 参数执行跨行或跨列聚合: ?...在更高级的实例中,你可能需要变换特定矩阵的维度。在机器学习应用中,经常会这样:某个模型对输入形状的要求与你的数据集不同。在这些情况下,NumPy 的 reshape() 方法就可以发挥作用了。...电子表格中的每个工作表都可以是它自己的变量。python 中最流行的抽象是 pandas 数据帧,它实际上使用了 NumPy 并在其之上构建。 ? 音频和时间序列 音频文件是样本的一维数组。

    1.8K22

    掌握NumPy,玩转数据操作

    除了数据切片和数据切块的功能之外,掌握numpy也使得开发者在使用各数据处理库调试 和 处理 复杂用例时更具优势。...import numpy as np NumPy中的数组操作 创建数组 我们可以通过将python列表传入np.array()来创建一个NumPy数组(也就是强大的ndarray)。...数组的切片操作 我们可以像python列表操作那样对NumPy数组进行索引和切片,如下图所示: 聚合函数 NumPy为我们带来的便利还有聚合函数,聚合函数可以将数据进行压缩,统计数组中的一些特征值...可以将此操作图解为如下所示: 矩阵的切片和聚合 索引和切片功能在操作矩阵时变得更加有用。可以在不同维度上使用索引操作来对数据进行切片。...电子表格中的每个工作表都可以是自己的变量。python中类似的结构是pandas数据帧(dataframe),它实际上使用NumPy来构建的。 音频和时间序列 音频文件是一维样本数组。

    1.6K21
    领券