Pandas中字符串处理 字符串是一种常见的数据类型,我们遇到的文本、json数据等都是属于字符串的范畴。Python内置了很多处理字符串的方法,这些方法为我们处理和清洗数据提供了很大的便利。...import pandas as pd Pandas改变Object数据类型 Object类型是我们在pandas中常用的字符串类型。...,列属性名是0,1,2…等自然数 # 使用expand参数,将返回的列表进行展开 df["Language"].str.split(" ", expand=True) .dataframe...Mckinney 2008 指定最大列属性值:n=1表示分割split之后的最大列索引值为1: df["Language"].str.split(" ", expand=True, n=1)...(索引号) str.rindex:查找指定字符在字符串中最后一次出现的位置(索引号) str.capitalize:将字符串中的单词的第一个字母变成大写,其余字母为小写 str.isalpha:检查字符串是否只由字母组成
首先,我们先导包并设置Pandas显示参数: import pandas as pd pd.set_option("display.max_colwidth", 100) 正则提取并分列 需求: ?...然后我使用agg函数直接对Datafream分列: df.agg({"补回原因": lambda x: x, "tmp": pd.Series}) 结果: ?...注意:_在ipython表示上一个输出返回的结果,jupyter还额外支持_num表示num编号单元格的输出。 _.fillna("") 结果: ?...**.apply(pd.Series)则可以将每个字典对象转换成Series,则可以将该字典扩展到多列,并将原始的Series转换为Datafream。...而result["counts"] = df.counts则将原始数据的counts列添加到结果列中。
如果我们想要将相同的函数应用于Pandas数据帧中整个列的值,我们可以简单地使用 .apply()。Pandas数据帧和Pandas系列(数据帧中的一列)都可以与 .apply() 一起使用。...但是,你是否注意到当我们有一个超大数据集时,.apply() 可能会非常慢? 在本文中,我们将讨论一些加速数据操作的技巧,当你想要将某个函数应用于列时。...将函数应用于单个列 例如,这是我们的示例数据集。...因此,要点是,在简单地使用 .apply() 函数处理所有内容之前,首先尝试为您的任务找到相应的 NumPy 函数。 将函数应用于多列 有时我们需要使用数据中的多列作为函数的输入。...编写一个独立的函数,可以将NumPy数组作为输入,并直接在Pandas Series(数据帧的列)的 .values 上使用它。 为了方便起见,这是本文中的全部Jupyter笔记本代码。
文本数据类型 在pandas中存储文本数据有两种方式:object 和 string。...在pandas 1.0版本之前,object是唯一的文本类型,在一列数据中如果包含数值和文本等混合类型则一般也会默认为object。...在pandas 1.0 版本之后,新增了string文本类型,可以更好的支持字符串的处理。 1.1. 类型简介 默认情况下,object仍然是文本数据默认的类型。...文本替换 我们经常在数据处理中用到替换功能,将指定的一些数据替换成我们想要替换的内容。同样,在处理文本数据替换的时候,str.repalce()也可以很好的满足这一操作。...文本提取 我们在日常中经常遇到需要提取某序列文本中特定的字符串,这个时候采用str.extract()方法就可以很好的进行处理,它是用正则表达式将文本中满足要求的数据提取出来形成单独的列。
来源丨吊车尾学院 今天给大家整理了100个Pandas常用的函数,可以放在手头当字典的那种。 分别分为6类:统计汇总函数、数据清洗函数、数据筛选、绘图与元素级运算函数、时间序列函数和其他函数。...() 等价于逻辑“与” value_counts() 频次统计 cumsum() 运算累计和 cumprod() 运算累计积 pct_change() 运算比率(后一个元素与前一个元素的比率) 数据清洗函数...sample() 抽样 where() 基于条件判断的值替换 replace() 按值替换(不可使用正则) str.replace() 按值替换(可使用正则) str.split.str() 字符分隔 数据筛选函数...函数 含义 isin() 成员关系判断 between() 区间判断 loc() 条件判断(可使用在数据框中) iloc() 索引判断(可使用在数据框中) compress() 条件判断 nlargest...() 搜寻最大的n个元素 nsmallest() 搜寻最小的n个元素 str.findall() 子串查询(可使用正则) 绘图与元素级运算函数 函数 含义 hist() 绘制直方图 plot() 可基于
前言 本文从拉勾网爬取深圳市数据分析的职位信息,并以CSV格式保存至电脑,之后进行数据清洗,生成词云,进行描述统计和回归分析,最终得出结论。 1....)) # 由于CSV文件内的数据是字符串形式,先用正则表达式将字符串转化为列表,再取区间的均值 pattern = '\d+' df['工作年限'] = df['工作经验'].str.findall...词云 我们将职位福利这一列的数据汇总,生成一个字符串,按照词频生成词云实现python可视化。以下是原图和词云的对比图,可见五险一金在职位福利里出现的频率最高,平台、福利、发展空间、弹性工作次之。...可知,数据分析师的均值在14.6K,中位数在12.5K,算是较有前途的职业。数据分析散布在各个行业,但在高级层面上涉及到数据挖掘和机器学习,在IT业有长足的发展。...数据分析职位有62.9%在南山区,有25.8%在福田区,剩下少数分布在龙岗区、罗湖区、宝安区、龙华新区。我们以小窥大,可知南山区和福田区是深圳市科技业的中心。 6.
刚开始学习pandas时要记住所有常用的函数和方法显然是有困难的,所以在Dataquest(https://www.dataquest.io/)我们主张查找pandas参考资料(http://pandas.pydata.org...df.head(n) 数据框的前n行 df.tail(n) 数据框的后n行 df.shape() 行数和列数 df.info() 索引,数据类型和内存信息 df.describe() 数值列的汇总统计信息...col2和col3的平均值 df.groupby(col1).agg(np.mean) 查找每个唯一col1组的所有列的平均值 data.apply(np.mean) 在每个列上应用函数 data.apply...(np.max,axis=1) 在每行上应用一个函数 加入/合并 df1.append(df2) 将df1中的行添加到df2的末尾(列数应该相同) df.concat([df1, df2],axis=...df.describe() 数值列的汇总统计信息 df.mean() 返回所有列的平均值 df.corr() 查找数据框中的列之间的相关性 df.count() 计算每个数据框的列中的非空值的数量 df.max
精选100个Pandas函数 精心整理100个pandas常用函数,建议收藏~ a aggregate() #聚合;基于内置函数或者自定义函数的聚合运算 argmin() 最小值所在的索引 argmax...() 最大值所在的索引 any() 等价于逻辑“或” all() 等价于逻辑“与” astype() 强制类型转换 apply() # 自定义函数的元素操作 append() 序列元素的追加...;只能使用数值 j join() # 数据合并 k kurt() 计算峰度 l loc() # 定位数据 m min() 最小值 max() 最大值 mean() 均值 median()...,包含空值) std() 计算标准差 skew() 计算偏度 sample() 抽样 str.split() 字符分割 str.findall() sort_values() # 按值排序 sort_index...() 按索引排序 stack() # 堆叠;列转行 t to_dict() 转为字典 tolist() 转为列表 transpose .T # 转置 u unique() 元素唯一值(去重
Pandas 是基于NumPy 的一种工具,该工具是为解决数据分析任务而创建的。它提供了大量能使我们快速便捷地处理数据的函数和方法。...本文介绍的这20个【被分成了15组】函数,绝对是数据处理杀手,用了你会爱不释手。 构造数据集 这里为大家先构造一个数据集,用于为大家演示这20个函数。.... replace函数 这个函数主要用于将指定位置的字符,替换为给定的字符串; df["身高"].str.replace(":","-") 效果图: image.png 这个函数还接受正则表达式,将指定位置的字符...split方法+expand参数 这个函数主要用于将一列扩展为好几列; # 普通用法 df["身高"].str.split(":") # split方法,搭配expand参数 df[["身高描述","final...() df["姓名"].str.len() 效果图: 14. findall函数 这个函数主要用于利用正则表达式,去字符串中匹配,返回查找结果的列表; df["身高"] df["身高"].str.findall
本文将详细介绍 pandas.info() 函数的用法,并通过代码示例展示如何使用该函数获取数据框的基本信息。无论你是数据分析小白还是大佬,这篇文章都将为你提供有价值的参考。...背景 在数据分析过程中,我们经常需要了解数据框的结构和基本信息。pandas 提供了多种工具来帮助我们完成这一任务,其中 info() 函数就是一个非常有用的工具。...引言 pandas.info() 函数是 pandas 库中的一个方法,用于快速了解 DataFrame 的基本信息,包括索引类型、列数、非空值计数和数据类型等。这对于数据预处理和分析非常重要。...详细参数分析 3.1 verbose 参数 verbose 参数决定是否显示所有列的信息。当数据框有大量列时,默认情况下 info() 可能不会显示所有列。...df.info(memory_usage=True) 3.3 null_counts 参数 null_counts 参数在 pandas 1.0.0 版之后被弃用。它决定是否显示每列的空值计数。
今天给大家整理了100个Pandas常用的函数。 分别分为6类:统计汇总函数、数据清洗函数、数据筛选、绘图与元素级运算函数、时间序列函数和其他函数。...() 等价于逻辑“与” value_counts() 频次统计 cumsum() 运算累计和 cumprod() 运算累计积 pct_change() 运算比率(后一个元素与前一个元素的比率) 数据清洗函数...sample() 抽样 where() 基于条件判断的值替换 replace() 按值替换(不可使用正则) str.replace() 按值替换(可使用正则) str.split.str() 字符分隔 数据筛选函数...函数 含义 isin() 成员关系判断 between() 区间判断 loc() 条件判断(可使用在数据框中) iloc() 索引判断(可使用在数据框中) compress() 条件判断 nlargest...() 搜寻最大的n个元素 nsmallest() 搜寻最小的n个元素 str.findall() 子串查询(可使用正则) 绘图与元素级运算函数 函数 含义 hist() 绘制直方图 plot() 可基于
不同的是applymap()将传入的函数等作用于整个数据框中每一个位置的元素,因此其返回结果的形状与原数据框一致。...三、聚合类方法 有些时候我们需要像SQL里的聚合操作那样将原始数据按照某个或某些离散型的列进行分组再求和、平均数等聚合之后的值,在pandas中分组运算是一件非常优雅的事。...3.1 利用groupby()进行分组 要进行分组运算第一步当然就是分组,在pandas中对数据框进行分组使用到groupby()方法。...要注意的是,这里的apply传入的对象是每个分组之后的子数据框,所以下面的自编函数中直接接收的df参数即为每个分组的子数据框: import numpy as np def find_most_name...,但聚合结果的列名变成红色框中奇怪的样子,而在pandas 0.25.0以及之后的版本中,可以使用pd.NamedAgg()来为聚合后的每一列赋予新的名字: data.groupby(['year','
因此掌握更多的数据清洗方法,会让你的能力调高100倍。 本文基于此,讲述pandas中超级好用的str矢量化字符串函数,学了之后,瞬间感觉自己的数据清洗能力提高了。 ?...1个数据集,16个Pandas函数 数据集是黄同学精心为大家编造,只为了帮助大家学习到知识。...观察上述数据,数据集是乱的。接下来,我们就用16个Pandas来对上述数据,进行数据清洗。...⑫ replace:将指定位置的字符,替换为给定的字符串(接受正则表达式) replace中传入正则表达式,才叫好用; 先不要管下面这个案例有没有用,你只需要知道,使用正则做数据清洗多好用; df["收入...df["身高"] df["身高"].str.findall("[a-zA-Z]+") 结果如下: ?
不同的是applymap()将传入的函数等作用于整个数据框中每一个位置的元素,因此其返回结果的形状与原数据框一致。...三、聚合类方法 有些时候我们需要像SQL里的聚合操作那样将原始数据按照某个或某些离散型的列进行分组再求和、平均数等聚合之后的值,在pandas中分组运算是一件非常优雅的事。...3.1 利用groupby()进行分组 要进行分组运算第一步当然就是分组,在pandas中对数据框进行分组使用到groupby()方法。...要注意的是,这里的apply传入的对象是每个分组之后的子数据框,所以下面的自编函数中直接接收的df参数即为每个分组的子数据框: import numpy as np def find_most_name...可以注意到虽然我们使用reset_index()将索引列还原回变量,但聚合结果的列名变成红色框中奇怪的样子,而在pandas 0.25.0以及之后的版本中,可以使用pd.NamedAgg()来为聚合后的每一列赋予新的名字
2.1 map() 类似Python内建的map()方法,pandas中的map()方法将函数、字典索引或是一些需要接受单个输入值的特别的对象与对应的单个列的每一个元素建立联系并串行得到结果,譬如这里我们想要得到...将传入的函数等作用于整个数据框中每一个位置的元素,因此其返回结果的形状与原数据框一致,譬如下面的简单示例,我们把婴儿姓名数据中所有的字符型数据消息小写化处理,对其他类型则原样返回: def lower_all_string...三、聚合类方法 有些时候我们需要像SQL里的聚合操作那样将原始数据按照某个或某些离散型的列进行分组再求和、平均数等聚合之后的值,在pandas中分组运算是一件非常优雅的事。...传入的对象是每个分组之后的子数据框,所以下面的自编函数中直接接收的df参数即为每个分组的子数据框: import numpy as np def find_most_name(df): return...可以注意到虽然我们使用reset_index()将索引列还原回变量,但聚合结果的列名变成红色框中奇怪的样子,而在pandas 0.25.0以及之后的版本中,可以使用pd.NamedAgg()来为聚合后的每一列赋予新的名字
,提供iloc函数根据行索引选取一个单独行作为列索引,提供reindex函数为数据框重新生成索引。...基本过程就是将每个输入文件读取到pandas数据框中,将所有数据框追加到一个数据框列表,然后使用concat 函数将所有数据框连接成一个数据框。...如果你需要平行连接数据,那么就在concat 函数中设置axis=1。除了数据框,pandas 中还有一个数据容器,称为序列。你可以使用同样的语法去连接序列,只是要将连接的对象由数据框改为序列。...,然后使用数据框函数将此对象转换为DataFrame,以便可以使用这两个函数计算列的总计和均值。...因为输出文件中的每行应该包含输入文件名,以及文件中销售额的总计和均值,所以可以将这3 种数据组合成一个文本框,使用concat 函数将这些数据框连接成为一个数据框,然后将这个数据框写入输出文件。
另外,本文所有数据分析工作和图表创建均应用pandas和matplotlib完成,两幅词云图片应用wordcloud库制作。 02 数据清洗 由于数据爬取时较为随意,所以数据清洗的难度就自然比较大。...,有7条(经模糊匹配,网易相关的有9条记录) 教育相关信息中,具有3-5年工作经验、本科学历的记录数最多,有126条 薪资在15-30K的记录最多,有24条 由于原始数据中各字段均为字符串类型,且有很多不够规范之处...,且不是本文分析主体,直接过滤掉 df = df.loc[~df['salary'].str.contains('天'),:] 这是通过筛选记录构建新的dataframe的思路,也可以继续用drop函数实现...本科学历足以满足绝大部分数据分析师岗位要求 ? 要求经验不限和要求经验在5年以上的招聘记录数量相当,不到40条 具有3年相关经验的数据分析师需求量最大 ?...,使用最频繁的工具是SQL、Python和Hive,主要工作在西湖、滨江等区划,拿着整体较高的薪水。
而Pandas的另一种数据类型:DataFrame,在许多特性上和Series有相似之处。...(2)顾名思义,这个就是一个数据框,用来存储这个二维数组的相关的信息,通过行和列可以找到对应的位置的元素,这个是pandas模块里面经常使用的一种数据结构,下面的就是一个基本的数据框; 显然,这个框有三个部分组成...序列合并成为了一个数据框,这个就表明了这个数据框就是很多个序列对象的集合,这里只是展示出来了两个,其实可以有更多个序列的,可以看见这些序列的行索引都是一样的,但是列索引是不一样的,合并起来之后可以共用行索引...,列索引单独表示; 和这个序列相似,在没有这个特殊说明的情况下面,这个索引就是从0开始排列生成的; 2.DataFrame的构造函数 (1) 其实这个构造函数的形式,以及这个函数的参数都适合昨天的序列的构造函数没有太大的区别...,但是在构造函数的参数里面,我们指明了这个列索引,我们上面的那个传递进来的就是键值对的字典,现在传进来的就是一个嵌套的列表 # 导入pandas模块,简称pd import pandas as pd
今天小编来和大家分享几个Pandas实战技巧,相信大家看了之后肯定会有不少的收获。...(title="Pandas Profiling Report") profile.to_file(output_file="output.html") 基于数据类型的操作 pandas能够表示的数据类型有很多...assign方法,当然除此之外还有其他的方法可供尝试,代码如下 # 摄氏度与华氏度之间的数制转换 df.assign(temp_f=lambda x: x.temp_c * 9 / 5 + 32) 在指定的位置插入新的一列...insert方法,代码如下 random_col = np.random.randint(10, size=len(df)) df.insert(3, 'random_col', random_col) # 在第三列的地方插入...([A-Z]{1,9})' df['email'].str.findall(pattern, flags=re.IGNORECASE) 缺失值 查看空值的比例 我们要是想要查看在数据集当中空值所占的比例
数据框转换 继续学习如何将宽表格式数据框转换为darts数据结构。...比如一周内商店的概率预测值,无法存储在二维Pandas数据框中,可以将数据输出到Numpy数组中。...Gluonts数据集是Python字典格式的时间序列列表。可以将长式Pandas数据框转换为Gluonts。...Gluonts--从长表格式 Pandas 数据框 gluons.dataset.pandas 类有许多处理 Pandas 数据框的便捷函数。...将图(3)中的宽格式商店销售额转换一下。数据帧中的每一列都是带有时间索引的 Pandas 序列,并且每个 Pandas 序列将被转换为 Pandas 字典格式。
领取专属 10元无门槛券
手把手带您无忧上云