首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

TensorFlow 模型优化工具包  —  训练后整型量化

优化模型以缩减尺寸、延时和功耗,使准确率损失不明显 为何应使用训练后整型量化 我们之前发布的“混合”训练后量化方法可在许多情况下减少模型大小和延迟时间,但却必须进行浮点计算,这可能不适用于所有硬件加速器...如何启用训练后整型量化 我们的整型量化工具需要使用一个小型代表性数据校正集。只需为转换器提供 representative_dataset 生成器,优化参数便会对输入模型执行整型量化。...例如,我们仅使用 ImageNet 数据集中的 100 张图像对模型进行校准后,即得出了以下准确率。 结果 延时 与浮点模型相比,量化模型在 CPU 上的运行速度提升了2到4倍,模型压缩提升4倍。...整型模型的工作原理 记录动态范围 以上新工具的工作原理是:记录动态范围,在浮点 TensorFlow Lite 模型上运行多个推理,并将用户提供的代表性数据集用作输入。...同时,我们也鼓励您尝试使用训练后量化法,因为它也许能满足模型的所有需求! 文档和教程 您可以在 TensorFlow 网站上找到关于训练后整型量化、新量化规范以及训练后整型量化教程的详细信息。

1.6K50

一周AI论文 | FB发布商业化图像识别系统,多任务学习还能这样用

本周关键词:计算机视觉、强化学习、NLI基准数据集 本周最佳学术研究 统一的计算机视觉模型中继和商业嵌入 在本文中,Facebook研究人员介绍了一种已商业化的图像识别系统GrokNet,它利用多任务学习方法来训练单个计算机视觉中继...与此前最先进的Facebook产品识别系统相比,该系统在精确的产品匹配准确度方面提高了2.1倍。研究人员使用80个多分类损失函数和3个嵌入损失函数,在跨多个垂直行业的7个数据集上对该系统进行了训练。...转换器(Transformers)即循环神经网络(RNNs):具有线性注意力的快速自回归转换器 本文提出了一种线性转换器,即一种可以显著减少原始转换器内存和计算成本的模型。...原文: https://arxiv.org/abs/2006.16958v1 自然语言理解的又一新基准 Facebook AI Research引入了一个新的大规模NLI基准数据集,该数据集是通过迭代的...他们表明,在这个新数据集上的训练模型可以在各种流行的NLI基准上带来最先进的性能,同时使用新的测试集提出了更加困难的挑战。 他们的分析揭示了当前最新模型的缺点,并表明非专家标注者可以成功地发现其缺点。

72640
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    掌握深度学习,为什么要用PyTorch、TensorFlow框架?

    毕竟,许多数据集可以用解析方法或简单的统计过程进行建模。 另一方面,在某些情况下,深度学习或深度迁移学习可以帮助你训练更准确的模型。...JavaScript库; TensorFlow Lite,一个轻量级库,用于在移动和嵌入式设备上部署模型; TensorFlow Extended,是一个端到端平台,用于在大型生产环境中准备数据、培训...高效地使用 TensorFlow 2.0 方法是,使用高级的 tf.keras API(而不是旧的低级 AP,这样可以大大减少需要编写的代码量。...转换器可以将 TensorFlow 模型转换为高效的形式供解释器使用,还可引入优化以缩小可执行文件大小并提高性能。...,然后再深入研究你可以用于训练的数据类型。 如果你不熟悉深度学习,那么我建议你先阅读 TensorFlow 2 中的 Keras 教程,以及 PyTorch 中的 fastai 教程。

    1.5K10

    为什么要用 PyTorch、TensorFlow 框架

    毕竟,许多数据集可以用解析方法或简单的统计过程进行建模。 另一方面,在某些情况下,深度学习或深度迁移学习可以帮助你训练更准确的模型。...库; TensorFlow Lite,一个轻量级库,用于在移动和嵌入式设备上部署模型; TensorFlow Extended,是一个端到端平台,用于在大型生产环境中准备数据、培训、验证和部署模型。...高效地使用TensorFlow 2.0方法是,使用高级的tf.keras API(而不是旧的低级AP,这样可以大大减少需要编写的代码量。...转换器可以将TensorFlow模型转换为高效的形式供解释器使用,还可引入优化以缩小可执行文件大小并提高性能。 TensorFlow Extended(TFX)是用于部署生产机器学习管道的端到端平台。...,然后再深入研究你可以用于训练的数据类型。 如果你不熟悉深度学习,那么我建议你先阅读TensorFlow 2中的Keras教程,以及PyTorch中的fastai教程。

    1.1K21

    谷歌 AI:语义文本相似度研究进展

    通过加入另一个预测任务(在这一任务中,采用 SNLI entailment 数据集)与利用共享的编码层增强两者,我们在相似度衡量任务上得到了十分不错的表现,比如 STSBenchmark(一个句子相似度衡量的基准...采用这种方法,训练时间显著减少的同时仍保留了在各种迁移任务上的表现,包括情感与语义相似度分类。...这些是预训练的 Tensorflow 模型,可以返回可变长度文本输入的语义编码。 这些编码可用于语义相似性度量,相关性,分类或自然语言文本的聚类。...大型通用句子编码器使用我们第二篇论文中介绍的转换器编码器进行训练。 它针对需要高精度语义表示的场景以及以牺牲速度和大小为代价获取最佳性能的模型。...小模型使用句子片段而不是单词进行训练,这样大幅度降低了词汇的大小,这是模型大小的主要决定因素。它针对内存和CPU等资源有限的场景,例如基于手持设备或基于浏览器的实现。

    1.3K30

    干货 | 谷歌 AI:语义文本相似度研究进展

    通过加入另一个预测任务(在这一任务中,采用 SNLI entailment 数据集)与利用共享的编码层增强两者,我们在相似度衡量任务上得到了十分不错的表现,比如 STSBenchmark(一个句子相似度衡量的基准...采用这种方法,训练时间显著减少的同时仍保留了在各种迁移任务上的表现,包括情感与语义相似度分类。...这些是预训练的 Tensorflow 模型,可以返回可变长度文本输入的语义编码。 这些编码可用于语义相似性度量,相关性,分类或自然语言文本的聚类。...大型通用句子编码器使用我们第二篇论文中介绍的转换器编码器进行训练。 它针对需要高精度语义表示的场景以及以牺牲速度和大小为代价获取最佳性能的模型。...小模型使用句子片段而不是单词进行训练,这样大幅度降低了词汇的大小,这是模型大小的主要决定因素。它针对内存和CPU等资源有限的场景,例如基于手持设备或基于浏览器的实现。

    79840

    TensorFlow 2.0入门

    TensorFlow 2.0中的所有新增内容及其教程均可在YouTube频道及其改版网站上找到。但是今天在本教程中,将介绍在TF 2.0中构建和部署图像分类器的端到端管道。...高级API构建和训练图像分类器模型 下载和微调InceptionV3卷积神经网络 使用TensorFlow服务为受过训练的模型提供服务 本教程中的所有代码都可以在Jupyter笔记本中的GitHub存储库中找到...在本教程中,将下载tf_flowers数据集,因此转到TensorFlow数据集网页并查找tf_flowers数据集。...编译和训练模型 在Keras中,编译模型只是将其配置为训练,即它设置在训练期间使用的优化器,损失函数和度量。为了训练给定数量的时期(数据集的迭代)的模型,.fit()在model对象上调用该函数。...TF2.0中构建和部署图像分类器的内容: 使用TensorFlow数据集在几行代码中下载公开可用的数据集。

    1.8K30

    【实践操作】 在iOS11中使用Core ML 和TensorFlow对手势进行智能识别

    在计算机科学中,手势识别是通过数学算法来识别人类手势的一个议题。用户可以使用简单的手势来控制或与设备交互,让计算机理解人类的行为。...注意:Core ML只支持在设备上评估模型,而不是训练新模型。 1.生成数据集 首先,让我们确保我们的机器学习算法有一些数据(手势)来学习。...这样,我就可以改变手势在未来转换成图像的方式,甚至可以使用非基于图像的方法来识别,而不用再画出所有的手势。手势输入在它的container文档文件夹中保存数据集。...教程地址:https://www.tensorflow.org/get_started/mnist/pros 我用来训练和导出模型的一组脚本在一个叫做“gesturelearner”的文件夹中。...这就给我们提供了两种把我们的神经网络转换成一个ML模型的方法: 使用一个用于构建神经网络的API的coremltools.模型包。

    2.7K60

    新版 PyTorch 1.2 已发布:功能更多、兼容更全、操作更快!

    TorchScript 是一种使用 PyTorch 代码创建可序列化和可优化模型的方法;任何 TorchScript 程序都可以从 Python 进程中保存,并在没有 Python 依赖的进程中实现加载...DAPI 库更新 PyTorch 域的库(如 torchvision、torchtext 和 torchaudio)提供了对常用数据集、模型和转换器的便捷访问,可用于快速创建最先进的基线模型。...对于大小的名称,我们用前缀 n_(例如「大小(n_freq,n_mel)的张量」)命名,而维度名称则不具有该前缀(例如「维度张量(通道,时间)」);并且所有变换和函数的输入我们现在首先要假定通道。...支持视频的 TORCHVISION 0.4 视频现在是 torchvision 中的一员,并且 torchvision 可以支持视频的数据加载、数据集、预训练模型和变换。...基于 Kinetics-400 数据集构建的预训练模型,用于视频(包括训练脚本)的动作分类。 用于训练用户自身视频模型的参考训练脚本。

    1.9K40

    教程 | 在Python和TensorFlow上构建Word2Vec词嵌入模型

    Word2Vec softmax 训练器 在接下来的教程中,我将解决的问题是该如何建立一个深度学习模型预测文本序列。然而,在建立模型之前,我们必须理解一些关键的自然语言处理(NLP)的思想。...在本教程中,我们将重点介绍 skip-gram 方法。 什么是 gram?gram 是一个有 n 个单词的组(group),其中 n 是 gram 的窗口大小(window size)。...在 TensorFlow 中实现 softmax Word2Vec 方法 与其他机器学习模型一样,该网络也有两个组件——一个用于将所有数据转换为可用格式,另一个则用于对数据进行训练、验证和测试。...在本教程中,我首先会介绍如何将数据收集成可用的格式,然后对模型的 TensorFlow 图进行讨论。请注意,在 Github 中可找到本教程的完整代码。...建立数据的最后一点在于,现在要创建一个包含输入词和相关 gram 的数据集,这可用于训练 Word2Vec 嵌入系统。

    1.8K70

    掌声送给TensorFlow 2.0!用Keras搭建一个CNN | 入门教程

    本教程的所有源代码都已发布到 GitHub 库中,有需要的读者可下载使用。...本文将使用 tf_flowers 数据集,该数据集的详细信息可以在 TensorFlow 官网找到,具体内容如下: 数据集的总可下载大小 通过 tfds.load() 返回的数据类型/对象 数据集是否已定义了标准分割形式...在模型训练过程中,确保训练集和验证集的精度在逐渐增加,而损失逐渐减少,这是非常重要的。 如果训练精度高但验证精度低,那么模型很可能出现了过拟合。...预训练模型通常已经在大型的数据集上进行过训练,通常用于完成大型的图像分类任务。直接使用预训练模型来完成我们的分类任务,我们也可以运用迁移学习的方法,只使用预训练模型的一部分,重新构建属于自己的模型。...简单来讲,迁移学习可以理解为:一个在足够大的数据集上经过训练的模型,能够有效地作为视觉感知的通用模型,通过使用该模型的特征映射,我们就可以构建一个鲁棒性很强的模型,而不需要很多的数据去训练。

    1.5K30

    利用NVIDIA迁徙学习工具包加速智能视频分析

    使用迁移学习工具包特性 让我们快速浏览一下迁移学习工具包的关键特性。9个图像分类和检测模型预先打包在迁徙学习工具包中,其中包括在公共可用数据集上经过训练的网络。.../path/to/save/model 下载时间取决于网络速度 步骤2:训练模型 用于对象检测的预训练模型使用kitti文件格式的数据集。...TLT提供了一个从kitti到TFRecords的数据集转换器。TFRecords帮助更快地遍历数据。...这是因为修剪API可以在不牺牲精度的情况下将模型的大小减少6倍。修剪后,需要对模型进行重新训练以恢复精度,因为修剪过程中可能会删除一些有用的连接。...包括一个名为TLT转换器的小实用程序。转换器采用使用TLT -export在TLT docker中导出的模型,并将其转换为TensorRT引擎。

    96720

    每日学术速递4.16

    2.Verbs in Action: Improving verb understanding in video-language models 标题:行动中的动词:提高视频语言模型中的动词理解...最近,基于 CLIP 的最先进的视频语言模型已被证明对动词的理解有限,并且广泛依赖名词,这限制了它们在需要动作和时间理解的真实视频应用程序中的性能。...这包括两个主要部分:(1)利用预训练的大型语言模型(LLM)为跨模态对比学习创建硬底片,以及平衡正面和负面对中概念出现的校准策略;(2) 执行细粒度的动词短语对齐损失。...受计算机视觉中从粗到精概念的启发,我们利用小图像有效地从大规模语言监督中学习,并最终使用高分辨率数据微调模型。...由于视觉转换器的复杂性在很大程度上取决于输入图像的大小,我们的方法在理论上和实践中都显着减少了训练资源需求。

    19720

    卷积神经网络

    可视化 训练,包括输入图像,损失和激活和梯度的分布中的网络活动。 用于计算 学习参数的 移动平均值并在评估期间使用这些平均值以提高预测性能的例程。 执行 学习率计划 ,随着时间的推移系统地减少。...尝试编辑架构以精确地再现顶层中的本地连接的体系结构。 模特训练 训练网络进行N次分类的通常方法是 多项Logistic回归。softmax回归。...python cifar10_train.py 注意:首次在CIFAR-10教程中运行任何目标时,CIFAR-10数据集将自动下载。数据集是〜160MB,所以你可能想要一杯咖啡,首先运行。...评估模型 现在让我们来评估训练模型在保留数据集上的表现。该模型由脚本进行评估cifar10_eval.py。...请参阅共享变量的方法。 在多个GPU卡上启动和训练模型 如果您的机器上安装了几个GPU卡,则可以使用它们使用cifar10_multi_gpu_train.py脚本更快地对模型进行训练。

    1.3K100

    如何使用TensorFlow构建神经网络来识别手写数字

    第2步 - 导入MNIST数据集 我们将在本教程中使用的数据集称为MNIST数据集,它是机器学习社区中的经典之作。该数据集由手写数字的图像组成,大小为28x28像素。...查看三个子集中的每一个的num_examples,我们可以确定数据集已分为55,000个用于训练的图像,5000个用于验证,10,000个用于测试。...随着学习的进展,我们应该看到损失减少,最终我们可以停止培训并使用网络作为测试新数据的模型。...这与我们之前在使用TensorFlow读取数据集时使用的表示不同,因此我们需要做一些额外的工作来匹配格式。 首先,我们使用带L参数的convert函数将4D RGBA表示减少到一个灰度颜色通道。...结论 在本教程中,您成功地训练了一个神经网络,对MNIST数据集进行了大约92%的准确度分类,并在您自己的图像上进行了测试。

    1.6K104

    手把手教程:如何从零开始训练 TF 模型并在安卓系统上运行

    本教程介绍如何使用 tf.Keras 时序 API 从头开始训练模型,将 tf.Keras 模型转换为 tflite 格式,并在 Android 上运行该模型。...下载我的示例代码并执行以下操作: 在 colab 中运行:使用 tf.keras 的训练模型,并将 keras 模型转换为 tflite(链接到 Colab notebook)。...1.训练自定义分类器 加载数据 我们将使用作为tf.keras框架一部分的mnst数据。...将位图转换为 bytebuffer 并将像素转换为灰度,因为 MNIST 数据集是灰度的。 使用由内存映射到 assets 文件夹下的模型文件创建的解释器运行推断。...有时,转换似乎是成功的,但转换后的模型却不起作用:例如,转换后的分类器可能在正负测试中以~0.5 的精度随机分类。(我在 tf 1.10 中遇到了这个错误,后来在 tf1.12 中修复了它)。

    2.2K20

    Python安装TensorFlow 2、tf.keras和深度学习模型的定义

    如何通过减少过度拟合和加速训练来提高tf.keras模型的性能。 这些例子很小。您可以在大约60分钟内完成本教程。...', metrics=['accuracy']) 拟合模型 拟合模型要求您首先选择训练配置,例如历元数(遍历训练数据集)和批处理大小(历时中用于估计模型误差的样本数)。...拟合模型是整个过程中很慢的部分,可能需要几秒钟到几小时到几天不等,具体取决于模型的复杂性,所使用的硬件以及训练数据集的大小。 从API角度来看,这涉及到调用一个函数来执行训练过程。...这应该是训练过程中未使用的数据,以便在对新数据进行预测时,我们可以获得模型性能的无偏估计。 模型评估的速度与您要用于评估的数据量成正比,尽管它比训练要快得多,因为模型没有改变。...4.用于nlp的python:使用keras的多标签文本lstm神经网络分类 5.用r语言实现神经网络预测股票实例 6.R语言基于Keras的小数据集深度学习图像分类 7.用于NLP的seq2seq模型实例用

    1.5K30

    从未失手的AI 预测:川普将赢得选举,入主白宫 (附深度学习生成川普语录教程)

    你还需要安装Tensorflow。 PTB文本和字符模型 Tensorflow的语言建模教程使用非常小的Penn Tree Bank数据集中更小型的模型。不过,它是使用RNN做语言建模的非常好的介绍。...语言建模 语言建模是一种在一系列所有可能的词序列中学习概览分布P(w_1, ..., w_n)的任务。其目标是理解这样一个事实:在概率分布P中真正的句子会比随机的单词组合拥有更大的概率。...从语言模型中抽取样本是最有趣的部分,但是,在TensorFlow的官方教程中并不包含这一部分,所以,我们在这里进行补充。 首先,我们对模型的图进行调整,把样本生成器包括进来: ?...在数据集中,它只有887521个单词,附带一个词汇表,内含10000个不同的词汇。我会使用这一数据库训练2个模型:1)一个使用单词作为输入的语言模型;2)只使用字母作为输入的语言模型。...所有的这些演讲知识产权都属于川普,在这里仅用于语言建模研究使用。我一共使用了7篇讲稿,作为训练集,还有一个作为验证集。需要注意的是,这是一个非常非常小的训练数据集。

    1K80

    深度学习(一)基础:神经网络、训练过程与激活函数(110)

    以下是一些关键的概念和步骤: 训练集、验证集和测试集的划分: 训练集(Training Set):用于训练模型的数据集,模型通过这些数据学习到数据中的模式和规律。...验证集(Validation Set):用于模型选择和超参数调整的数据集。在训练过程中,使用验证集来评估不同模型的性能,以选择最佳的模型。 测试集(Test Set):用于最终评估模型性能的数据集。...具体的划分比例可能会根据实际情况和数据集的大小进行调整。 过拟合和欠拟合的概念: 过拟合(Overfitting):当模型在训练集上表现很好,但在验证集或测试集上表现较差时,称为过拟合。...L2正则化(Ridge正则化):L2正则化通过在损失函数中添加权重的平方和来惩罚大的权重值,这有助于减少模型的方差,提高泛化能力。...学习基础:了解深度学习的基本概念,如神经网络、激活函数、损失函数等。 实践教程:通过官方文档、在线课程或教程学习如何使用框架构建和训练模型。

    41710

    Python安装TensorFlow 2、tf.keras和深度学习模型的定义

    在本教程中,您将找到使用tf.keras API在TensorFlow中开发深度学习模型的分步指南。...如何通过减少过度拟合和加速训练来提高tf.keras模型的性能。 这些例子很小。您可以在大约60分钟内完成本教程。...,例如历元数(遍历训练数据集)和批处理大小(历时中用于估计模型误差的样本数)。...拟合模型是整个过程中很慢的部分,可能需要几秒钟到几小时到几天不等,具体取决于模型的复杂性,所使用的硬件以及训练数据集的大小。 从API角度来看,这涉及到调用一个函数来执行训练过程。...这应该是训练过程中未使用的数据,以便在对新数据进行预测时,我们可以获得模型性能的无偏估计。 模型评估的速度与您要用于评估的数据量成正比,尽管它比训练要快得多,因为模型没有改变。

    1.6K30
    领券