AI科技评论按:本文是介绍用TensorFlow构建图像识别系统的第三部分。 在前两部分中,我们构建了一个softmax分类器来标记来自CIFAR-10数据集的图像,实现了约25-30%的精度。...要做的是首先对训练数据集的100个图像随机混洗。混洗之后的数据的前10个图像作为我们的第一个批次,接下来的10个图像是我们的第二批,后面的批次以此类推。...10批后,在数据集的末尾,再重复混洗过程,和开始步骤一致,依次取10张图像作为一批次。这保证没有任何图像比任何其它图像被更频繁地拾取,同时仍然确保图像被返回的顺序是随机的。...在训练完成后,最终模型在测试集上进行评估(记住,测试集包含模型到目前为止还没有看到的数据,使我们能够判断模型是否能推广到新的数据)。...在TensorFlow会话的初始化期间,创建一个摘要写入器,摘要编入器负责将摘要数据实际写入磁盘。在摘要写入器的构造函数中,logdir是日志的写入地址。
在除分组操作和聚合操作之外的操作中也能改变 RDD 的分区。Spark 提供了 repartition() 函数。它会把数据通过网络进行混洗,并创建出新的分区集合。...Q:为什么分区之后userData就不会发生混洗(shuffle)了? A:先看一下混洗的定义:混洗是Spark对于重新分发数据的机制,以便于它在整个分区中分成不同的组。...这通常会引起在执行器和机器上之间复制数据,使得混洗是一个复杂而开销很大的操作。...然后通过对第一个 RDD 进行哈希分区,创建出了第二个 RDD。 (2)从分区中获益的操作 Spark 的许多操作都引入了将数据根据键跨节点进行混洗的过程。...而对于诸如 cogroup() 和join() 这样的二元操作,预先进行数据分区会导致其中至少一个 RDD(使用已知分区器的那个 RDD)不发生数据混洗。
创建 – Value - RDD (1) parallelize:从驱动程序中对一个集合进行并行化,每个集合元素对应RDD一个元素 (2) textFile:读取外部数据集,每行生成一个RDD元素 2....开销很大,需要将所有数据通过网络进行混洗(shuffle)。 (5) mapPartitions:将函数应用于RDD中的每个分区,将返回值构成新的RDD。 3....累加器的值只有在驱动器程序中可以访问。 Spark会自动重新执行失败的或较慢的任务来应对有错误的或者比较慢的机器。...该任务在默认情况下会需要集群中的一个计算核心来执行。 从HDFS上读取输入RDD会为数据在HDFS上的每个文件区块创建一个分区。从数据混洗后的RDD派生下来的RDD则会采用与其父RDD相同的并行度。...Spark提供了两种方法对操作的并行度进行调优: (1) 在数据混洗操作时,使用参数的方式为混洗后的RDD指定并行度; (2) 对于任何已有的RDD,可以进行重新分区来获取更多或者更少的分区数。
换句话说,RDD 是类似于 Python 中的列表的对象集合,不同之处在于 RDD 是在分散在多个物理服务器上的多个进程上计算的,也称为集群中的节点,而 Python 集合仅在一个进程中存在和处理。...④.分区 当从数据创建 RDD 时,它默认对 RDD 中的元素进行分区。默认情况下,它会根据可用内核数进行分区。...**重新分区**, PySpark 提供了两种重新分区的方式; 第一:使用repartition(numPartitions)从所有节点混洗数据的方法,也称为完全混洗, repartition()方法是一项非常昂贵的操作...8、混洗操作 Shuffle 是 PySpark 用来在不同执行器甚至跨机器重新分配数据的机制。...PySpark Shuffle 是一项昂贵的操作,因为它涉及以下内容 ·磁盘输入/输出 ·涉及数据序列化和反序列化 ·网络输入/输出 混洗分区大小和性能 根据数据集大小,较多的内核和内存混洗可能有益或有害我们的任务
基础概念 在tensorflow的官方文档是这样介绍Dataset数据对象的: Dataset可以用来表示输入管道元素集合(张量的嵌套结构)和“逻辑计划“对这些元素的转换操作。...在Dataset中元素可以是向量,元组或字典等形式。 另外,Dataset需要配合另外一个类Iterator进行使用,Iterator对象是一个迭代器,可以对Dataset中的元素进行迭代提取。...(使用此函数前需先进行迭代器的初始化操作) 函数形式:make_initializable_iterator(shared_name=None) 参数shared_name:(可选)如果非空,则返回的迭代器将在给定名称下共享同一设备的多个会话...() element = iterator.get_next() with tf.Session() as sess: #对迭代器进行初始化操作 sess.run(iterator.initializer...14.shuffle 随机混洗数据集的元素。
从神经网络中的权重的随机初始化,到将数据分成随机的训练和测试集,再到随机梯度下降中的训练数据集的随机混洗(random shuffling),生成随机数和利用随机性是必需掌握的技能。...在本教程中,你将了解如何在Python中生成和使用随机数。 完成本教程后,你会学到: 可以通过使用伪随机数生成器在程序中应用随机性。 如何通过Python标准库生成随机数和使用随机性。...使用伪随机数生成器可以混洗数据并用随机值初始化系数。这种小程序通常是一个可以调用的返回随机数的函数。如果再次调用,他们将返回一个新的随机数。...下面的示例演示了对伪随机数生成器进行播种,生成一些随机数,并显示重新播种生成器将导致生成相同的数字序列。...混洗NUMPY数组 可以使用NumPy函数shuffle()随机混洗NumPy数组。 下面的示例演示了如何对NumPy数组进行随机混洗。
分布式:RDD是分布式的,RDD的数据至少被分到一个分区中,在集群上跨工作节点分布式地作为对象集合保存在内存中; 数据集: RDD是由记录组成的数据集。...惰性运算 PySpark 不会在驱动程序出现/遇到 RDD 转换时对其进行评估,而是在遇到(DAG)时保留所有转换,并在看到第一个 RDD 操作时评估所有转换。...**重新分区**, PySpark 提供了两种重新分区的方式; 第一:使用repartition(numPartitions)从所有节点混洗数据的方法,也称为完全混洗, repartition()方法是一项非常昂贵的操作...8、混洗操作 Shuffle 是 PySpark 用来在不同执行器甚至跨机器重新分配数据的机制。...PySpark Shuffle 是一项昂贵的操作,因为它涉及以下内容 ·磁盘输入/输出 ·涉及数据序列化和反序列化 ·网络输入/输出 混洗分区大小和性能 根据数据集大小,较多的内核和内存混洗可能有益或有害我们的任务
这种方法能在保证分割准确度的同时显著降低对计算资源的需求。机器之心在本文中对该项目进行了简要编译介绍,相关研究的 TensorFlow 代码已发布在 GitHub 上。...就我们所知,之前在实时形义分割上的研究都没有利用分组卷积和通道混洗(channel shuffling)。我们在本研究中提出的 ShuffleSeg 是一种计算高效的分割网络。...我们主要从其中使用的分组卷积和通道混洗中受到了启发。[4,2,3] 表明深度上可分的卷积或分组卷积可以在降低计算成本的同时维持优良的表征能力。分组卷积的堆叠可能会导致出现一大主要瓶颈。...为了解决这个问题,[4] 中引入了信道混洗,这种方法也在 ShuffleSeg 的编码和解码部分都得到了良好的应用。 ?...我们提出的架构基于其编码器中的分组卷积和通道混洗(channel shuffling),可用于提升性能。
这种方法将取消实现从第13到16行调用的逻辑和物理重新优化中抽象出来,简化了重写逻辑。例如,第5节和第6节中概述的所有逻辑重写和规划器规则都利用这种机制来停止正在进行的大型扫描、混洗或磁盘溢出。...在我们的查询引擎中,混洗分区在分区编号上是物理连续的,允许“合并”操作在逻辑上进行,而无需额外读取或写入混洗数据。...6.2 规划器规则混洗消除回退 类似于SCOPE[47]中的混洗消除优化,我们的静态优化器也进行基于成本的混洗消除。在大多数情况下,较少的混洗往往会使查询运行得更快。...然而,在执行时,发现R.a只有2个不同值,因此连接后的哈希聚合在所有执行器上只有两个有效的并行任务,无论有多少混洗分区。...由于所有基准测试都在相同大小的集群上进行,因此预计规模因子为1000的加速效果会小于规模因子为3000的。例如,在较小的数据集上,混洗连接和广播连接之间的性能差异通常较小。
本文将深入探索TensorFlow在大数据处理和分析中的应用,介绍其在数据预处理、模型构建、分布式训练和性能优化等方面的优势和特点。 数据预处理: 在大数据处理中,数据预处理是一个关键环节。...TensorFlow提供了丰富的工具和函数,可以帮助我们高效地对海量数据进行预处理。...本文将深入探讨TensorFlow在大数据处理和分析中的应用,涵盖了数据预处理、模型构建、分布式训练以及性能优化等方面的内容。 数据预处理 在大数据领域中,数据预处理是一个重要的环节。...TensorFlow提供了丰富的工具和功能,帮助我们对海量数据进行高效的处理和准备。...例如,我们可以使用tf.data.Dataset API读取和转换数据集,通过map函数应用预处理函数,使用batch函数进行批量处理,以及通过shuffle函数进行数据混洗等操作。
它还能提供其它效用程序,如数据的混洗和随机采样。 ? 数据加载器通常搭配 for-in 循环使用。举个例子: ? 在每次迭代中,数据加载器都会返回一批给定批大小的数据。...如果 shuffle 设为 True,则在创建批之前会对训练数据进行混洗。混洗能帮助优化算法的输入随机化,这能实现损失的更快下降。...之所以是「随机」,原因是样本是以批的形式选择(通常会用到随机混洗),而不是作为单独一个数据组。 ?...我们将遵循实现梯度下降的同一过程: 生成预测 计算损失 根据权重和偏置计算梯度 按比例减去少量梯度来调整权重 将梯度重置为零 唯一变化的是我们操作的是分批的数据,而不是在每次迭代中都处理整个训练数据集。...上面需要注意的几点: 我们使用之前定义的数据加载器来为每个迭代获取数据批次。
RDD的另一个关键特性是不可变,也即是在实例化出来导入数据后,就无法更新了。...每次对已有RDD进行转化操作(transformation)都会生成新的RDD; 2.加载数据到RDD 要开始一个Spark程序,需要从外部源的数据初始化出至少一个RDD。...4.RDD持久化与重用 RDD主要创建和存在于执行器的内存中。默认情况下,RDD是易逝对象,仅在需要的时候存在。 在它们被转化为新的RDD,并不被其他操作所依赖后,这些RDD就会被删除。...6.窄依赖(窄操作)- 宽依赖(宽操作): 窄操作: ①多个操作可以合并为一个阶段,比如同时对一个数据集进行的map操作或者filter操作可以在数据集的各元 素的一轮遍历中处理; ②子RDD只依赖于一个父...RDD ③不需要进行节点间的数据混洗 宽操作: ①通常需要数据混洗 ②RDD有多个依赖,比如在join或者union的时候 7.RDD容错性 因为每个RDD的谱系都被记录,所以一个节点崩溃时,任何RDD
Spark中的RDD是一个不可变的分布式对象集合。 2. 在Spark中数据的操作不外乎创建RDD、转化已有的RDD以及调用RDD操作进行求值。 3....创建RDD:1)读取一个外部数据集2)在驱动器程序里分发驱动器程序中的对象集合。 4. RDD支持的操作: 1)转换操作,由一个RDD生成一个新的RDD。...2)行动操作,对RDD进行计算结果,并把结果返回到驱动器程序中,或者把结果存储到外部存储系统(如HDFS)。 5....3)告诉Spark对需要被重用的中间结果RDD执行persist()操作。 4)使用行动操作 (例如count()和first()等)来触发一次并行计算,Spark会对计算进行优化后在执行。 6....(不需混洗)union() 生成一个包含两个RDD中所有元素的RDD (需要混洗)intersection() 求两个RDD共同的元素的RDD (需要混洗)subtract()
当RDD不需要混洗数据就可以从父节点计算出来,RDD不需要混洗数据就可以从父节点计算出来,或把多个RDD合并到一个步骤中时,调度器就会自动进行进行"流水线执行"(pipeline)。...一个物理步骤会启动很多任务,每个任务都是在不同的数据分区上做同样的事情,任务内部的流程是一样的,如下所示: 1.从数据存储(输入RDD)或已有RDD(已缓存的RDD)或数据混洗的输出中获取输入数据...3.把输出写到一个数据混洗文件中,写入外部存储,或是发挥驱动器程序。 ...调优方法 在数据混洗操作时,对混洗后的RDD设定参数制定并行度 对于任何已有的RDD进行重新分区来获取更多/更少的分区数。...数据混洗与聚合的缓存区(20%) 当数据进行数据混洗时,Spark会创造一些中间缓存区来存储数据混洗的输出数据。
就像在标准的ViT中一样,MAE的编码器通过添加了位置嵌入的线性投影来嵌入补丁,然后通过一系列Transformer块来处理结果集。然而,MAE的编码器只对全集的一小部分(例如25%)进行操作。...MAE将位置嵌入添加到该全集中的所有令牌中,如果没有这一点,掩码令牌将没有关于其在图像中的位置信息。 MAE解码器仅在预训练期间用于执行图像重建任务(只有编码器用于产生用于识别的图像表示。)...解码器的最后一层是线性投影,其输出通道的数量等于块中像素值的数量。对解码器的输出进行重构以形成重构图像。...编码后,MAE将一个掩码令牌列表添加到编码补丁列表中,并对这个完整列表纪念性unshuffle(反转随机混洗操作),以将所有标记与其目标对齐。编码器应用于该完整列表(添加了位置嵌入)。...如前所述,不需要稀疏运算,这种简单地实现引入了可忽略不计的开销,因为混洗和取消混洗操作很快。
这些将在下一节中解释,我们将在其中讨论数据集的转换。 转换数据集 创建数据集对象后,需要根据模型要求对其进行转换。...通常,此转换会将map_func应用于cycle_length输入元素,在返回的数据集对象上打开迭代器,并对其进行循环,从每个迭代器生成block_length连续元素,然后在每次到达迭代器的末尾时就使用下一个输入元素...通常,原始数据可以按特定顺序存储,例如相对于每个类一起存储,或者数据可以一起存储在特定源中。 必须对原始数据进行混洗,以确保训练,验证和测试数据分布在整个数据分布中。...另外,建议在每个周期之后对数据进行混洗。...为了做到这一点,有几个迭代器可以迭代一批数据。 一种是通过使用数据集对象中的tf.data.Iterator API。 TF 1.x 中有一个一次性的,可初始化的,可重新初始化的和可填充的迭代器。
如果您在MNIST数据集上运行此代码(在对其进行缩放后(例如,通过使用ScikitLearn的StandardScaler),您可能会得到一个在测试集上的准确率超过98.2%的模型!...训练DNN 这里我们将实现Minibatch渐变下降以在MNIST数据集上进行训练。 第一步是构建阶段,构建TensorFlow图。 第二步是执行阶段,您可以在其中实际运行图来训练模型。...我们可以使用ScikitLearn,但TensorFlow提供了自己的帮助程序,它可以提取数据,对数据进行缩放(0到1之间),对其进行混洗,并提供一个简单的函数来一次加载一个小批量。...此代码打开TensorFlow会话,并运行初始化所有变量的init节点。 然后它运行主要的训练循环:在每个时代,代码迭代对应于训练集大小的许多小批量。...接下来,在每个迭代结束时,代码将在最后一个小批量和完整训练集上评估模型,并打印出结果。 最后,模型参数保存到磁盘。 3.3 使用神经网络 现在神经网络已经过训练,您可以使用它来进行预测。
请注意,VGG-16 架构是在具有上述形状的图像净权重上进行预训练的。然后我们将通过对数据集执行图像数据增强来创建图像的变化。...调整大小步骤完成后,我们可以将所有者的目录转移到图像文件夹中。 图像数据的增强 我们收集并创建了我们的图像,下一步是对数据集执行图像数据增强以复制副本并增加数据集的大小。...=操作数据批次的数目 5. class_mode = 确定返回的标签数组的类型 6.shuffle= shuffle:是否对数据进行混洗(默认:True) 构建模型 在下一个代码块中,我们将在变量...我们将使用池化层对卷积层中的层进行下采样。2 个完全连接的层与激活一起用作 relu,即在样本通过展平层后的密集架构。...ReduceLROnPlateau — 此回调用于在指定的epoch数后降低优化器的学习率。在这里,我们将耐心指定为 10。
当RDD不需要混洗数据就可以从父节点计算出来,RDD不需要混洗数据就可以从父节点计算出来,或把多个RDD合并到一个步骤中时,调度器就会自动进行进行"流水线执行"(pipeline)。...一个物理步骤会启动很多任务,每个任务都是在不同的数据分区上做同样的事情,任务内部的流程是一样的,如下所示: 1.从数据存储(输入RDD)或已有RDD(已缓存的RDD)或数据混洗的输出中获取输入数据 2....3.把输出写到一个数据混洗文件中,写入外部存储,或是发挥驱动器程序。...调优方法 在数据混洗操作时,对混洗后的RDD设定参数制定并行度 对于任何已有的RDD进行重新分区来获取更多/更少的分区数。...数据混洗与聚合的缓存区(20%) 当数据进行数据混洗时,Spark会创造一些中间缓存区来存储数据混洗的输出数据。
领取专属 10元无门槛券
手把手带您无忧上云