首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【TensorFlow 谷歌神经机器翻译】从零开始打造属于你的翻译系统

使用in-graph beam search在seq2seq模型中执行推理。 为多GPU设置优化seq2seq模型。 希望这一教程有助于研究界创造更多新的NMT模型并进行实验。...请注意,可以选择使用预训练的单词表示(例如 word2vec 或 Glove vector)来初始化嵌入权重。一般来说,给定大量训练数据,我们可以从头开始学习这些嵌入。...上面的命令训练一个具有128-dim的隐藏单元和12个epoch的嵌入的2层LSTM seq2seq模型。我们使用的dropout值为0.2(保持或然率为0.8)。...我们选择最有可能的单词,即与最大logit值相关联的id作为输出的单词(这就是“greedy”行为)。例如在图3中,在第一个解码步骤中,单词“moi”具有最高的翻译概率。...推理使用模型预测的单词,而不是总是正确的目标单词作为输入。以下是实现greedy解码的代码。它与解码器的训练代码非常相似。 ?

2.2K40

ResNet 高精度预训练模型在 MMDetection 中的最佳实践

ResNet 高精度预训练 + Faster R-CNN,性能最高能提升 3.4 mAP! 1 前言 作为最常见的骨干网络,ResNet 在目标检测算法中起到了至关重要的作用。...3 高性能预训练模型 在目标检测任务上的表现 本节探讨高性能预训练模型在目标检测任务上的表现。本实验主要使用 COCO 2017 数据集在 Faster R-CNN FPN 1x 上进行。...3.3 mmcls rsb 预训练模型参数调优实验 通过修改配置文件中预训练模型,我们可以将 ResNet 的预训练模型替换为 MMClassification 通过 rsb 训练出的预训练模型。...当学习率为 0.04,weight decay 为 0.00001 时,使用 r50-tnr 作为预训练模型,在 SGD 算法下优化的 Faster R-CNN 可以达到最高的 39.8% mAP 的结果...4 总结 通过之前的实验,我们可以看出使用高精度的预训练模型可以极大地提高目标检测的效果,所有预训练模型最高的结果与相应的参数设置如下表所示: 从表格中可以看出,使用任意高性能预训练模型都可以让目标检测任务的性能提高

3.1K50
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    谷歌开放GNMT教程:如何使用TensorFlow构建自己的神经机器翻译系统

    使用 in-graph 集束搜索在 seq2seq 模型中进行推理。 优化 seq2seq 模型,以实现在多 GPU 设置中的模型训练。 下文我们将简要地介绍该 Github 教程项目。...我们通过以下方式实现这一目标: 使用最新的解码器/attention wrapper API、TensorFlow 1.2 数据迭代器。 结合了我们在构建循环型和 seq2seq 型模型的专业知识。...为了更高的效率,我们一次用多个句子(batch_size)进行训练。测试略有不同,我们会在后面讨论。 1.嵌入 给定单词的分类属性,模型首先必须查找词来源和目标嵌入以检索相应的词表征。...注意我们可以选择预训练的词表征如 word2vec 或 Glove vectors 初始化嵌入权重。通常给定大量的训练数据,我们能从头学习这些嵌入权重。...例如在图 3 中,单词 moi 在第一个解码步中具有最高的翻译概率。接着我们把这一单词作为输入馈送至下一个时间步。

    1.7K60

    浏览器中的机器学习:使用预训练模型

    在上一篇文章《浏览器中的手写数字识别》中,讲到在浏览器中训练出一个卷积神经网络模型,用来识别手写数字。值得注意的是,这个训练过程是在浏览器中完成的,使用的是客户端的资源。...虽然TensorFlow.js的愿景是机器学习无处不在,即使是在手机、嵌入式设备上,只要运行有浏览器,都可以训练人工智能模型,但是考虑到手机、嵌入式设备有限的计算能力(虽然手机性能不断飞跃),复杂的人工智能模型还是交给更为强大的服务器来训练比较合适...这个问题其实和TensorFlow Lite类似,我们可以在服务器端训练,在手机上使用训练出的模型进行推导,通常推导并不需要那么强大的计算能力。...在本文,我们将探索如何在TensorFlow.js中加载预训练的机器学习模型,完成图片分类任务。...这个示例写的比较简单,从浏览器控制台输出log,显示结果,在chrome浏览器中可以打开开发者工具查看: 加载json格式的MobileNets模型 使用封装好的JS对象确实方便,但使用自己训练的模型时

    1.2K20

    Seq2Seq、SeqGAN、Transformer…你都掌握了吗?一文总结文本生成必备经典模型(一)

    最常见的Seq2Seq模型是解码器-编码器(Encoder-Decoder)模型,由于时序数据的序列性质,通常情况下,我们使用RNN(Recurrent Neural Network)在Encoder中得到输入序列的特征向量...因此,Cho, K.等人做了以下改进,在每一步DecoderRNN输入层及全连接预测单词层加入z,同时,在全连接层预测下一个单词时,不仅加入了Encoder的最终隐藏状态z,还加入了当前单词经过嵌入层之后的结果...因此,解码器在时间t的隐藏状态是通过以下方式计算的: 下一个符号的条件分布是: 联合训练RNN编码器-解码器的两个组成部分以最大化条件对数似然: 一旦RNN编码器-解码器训练完毕,该模型可以用两种方式使用...注意力机制是提供源序列的更丰富的编码的机制,从源序列编码构建可以被解码器使用的上下文向量。注意力机制使得模型在目标序列预测每个单词的过程中,学习到源序列中编码的单词如何以及以什么程度集中注意力。...完整算法流程如下: 随机初始化G网络和D网络参数;通过MLE预训练G网络,目的是提高G网络的搜索效率;通过G网络生成部分负样预训练D网络;通过G网络生成sequence用D网络去评判,得到reward

    1.1K10

    资源 | TensorFlow推出新工具Seedbank:即刻使用的预训练模型库

    这些示例包括在 tensorflow.org 上的新入门经验、机器学习速成教程、distill.pub 上的研究文章,以及 tensorflow.org 上越来越多的教程(如神经机器翻译教程)。...TF Hub 还提供多种可直接应用的预训练机器学习模块,它们通常具备 Colab notebook 来说明如何应用,使操作更加简单。 ?...现在 Seedbank 提供了一个平台来搜索 Colab 支持的机器学习示例。你可以使用最高级类别(top-level category)来缩小探索范围,在 notebook 中搜索关键词。...但最好的一点是 Colab 可以让你编辑 notebook、将副本保存到 Google Drive,并与朋友或在社交媒体上共享那些衍生品,以及可以一直使用 Colab GPU 进行快速训练和推断。...你还可以从 Google Drive 中读取数据,使用 Google Drive 导入大型数据集也只是一瞬间的事儿。

    93310

    GPT、BERT、XLM、GPT-2、BART…你都掌握了吗?一文总结文本生成必备经典模型(二)

    非监督预训练 在预训练部分,用u表示每一个token(词),当设置窗口长度为k,预测句中的第i个词时,则使用第i个词之前的k个词,同时也根据超参数Θ,来预测第i个词最可能是什么。...: W_y 表示预测输出时的参数,微调时候需要最大化以下函数: GPT 在微调的时候也考虑预训练的损失函数,所以最终需要优化的函数为: 当前 SOTA!...输入嵌入是标记嵌入、分割嵌入和位置嵌入的总和。嵌入和位置嵌入的总和 接下来,MLM和 NSP是Bert的另外两个亮点: Bert中引入了一个带mask的语言模型训练(Masked LM)。...TLM的目标函数是对MLM的扩展,不考虑单语文本流,而是将平行的句子连接起来。在源句和目标句中随机掩码处理单词。...Cross-lingual Language Models 考虑对XLMs(CLM、MLM或TLM)进行跨语言模型预训练:对于CLM和MLM的目标函数,使用由256个标记组成的64个连续句子流来训练模型

    1.1K21

    预训练技术在美团到店搜索广告中的应用

    本文对预训练技术在广告相关性的落地方案进行了介绍,既包括训练样本上的数据增强、预训练及微调阶段的BERT模型优化等算法探索层面的工作,也包括知识蒸馏、相关性服务链路优化等实践经验。...自2018年底以来,以BERT[2]为代表的预训练模型在多项NLP任务上都取得了突破,我们也开始探索预训练技术在搜索广告相关性上的应用。...预训练模型在美团内部的NLP场景中也有不少落地实践,美团搜索已经验证了预训练模型在文本相关性任务上的有效性[5]。 而针对预训练在语义匹配任务中的应用,业界也提出不少的解决方案。...在通用型知识蒸馏阶段,使用规模更大的预训练BERT模型作为教师模型,对学生模型在无监督预训练语料上进行通用知识蒸馏,得到通用轻量模型,该模型可用于初始化任务型知识蒸馏里的学生模型或直接对下游任务进行微调...在模型结构优化方面,我们尝试了对不同业务场景做多任务学习,以及在BERT输入中引入品类文本片段这两种方案使模型更好地拟合美团搜索广告业务数据,并利用规模更大的预训练模型进一步提升了模型的表达能力。

    1.5K20

    TensorFlow在推荐系统中的分布式训练优化实践

    图2 自动化实验框架 2.2.2 业务视角的负载分析 在推荐系统场景中,我们使用了TensorFlow Parameter Server[3](简称PS)异步训练模式来支持业务分布式训练需求。...相比原生使用Variable进行Embedding的方式,具备以下的优势: HashTable的大小可以在训练过程中自动伸缩,避免了开辟冗余的存储空间,同时用户无需关注申请大小,从而降低了使用成本。...在美团内部的深度学习场景中,RDMA通信协议使用的是RoCE V2协议。目前在深度学习训练领域,尤其是在稠密模型训练场景(NLP、CV等),RDMA已经是大规模分布式训练的标配。...图11 MR静态分配器构造流程 具体到实现中,我们引入了Allocation Analysis模块,在训练开始的一段时间,我们会对分配的历史数据进行分析,以得到一个实际预开辟MR大小以及各个Tensor...5 总结与展望 TensorFlow在大规模推荐系统中被广泛使用,但由于缺乏大规模稀疏的大规模分布式训练能力,阻碍了业务的发展。

    1.1K10

    NLP在预训练模型的发展中的应用:从原理到实践

    在具体任务中,研究者们可以使用预训练模型的权重作为初始化参数,然后在少量标注数据上进行微调,以适应具体任务的要求。这种迁移学习的方式显著降低了在特定任务上的数据需求,提高了模型的泛化能力。4....预训练模型在文本生成中的应用4.1 GPT-3的文本生成GPT-3是由OpenAI提出的预训练模型,具有1750亿个参数。...预训练模型在情感分析中的应用5.1 情感分析模型的微调预训练模型在情感分析任务中可以通过微调来适应特定领域或应用。通过在包含情感标签的数据上进行微调,模型能够更好地理解情感色彩,提高情感分析的准确性。...)5.2 情感分析应用预训练模型在情感分析应用中具有广泛的实用性。...预训练模型在语义理解中的应用6.1 语义相似度计算预训练模型在语义相似度计算任务中有出色表现。通过输入两个句子,模型可以计算它们在语义上的相似度,为信息检索等任务提供支持。

    36820

    用基于 TensorFlow 的强化学习在 Doom 中训练 Agent

    有些深度学习的工具 ,比如 TensorFlow(https://www.tensorflow.org/ ) 在计算这些梯度的时候格外有用。...在我们的例子中,我们将会收集多种行为来训练它。我们将会把我们的环境训练数据初始化为空,然后逐步添加我们的训练数据。 ? 接下来我们定义一些训练我们的神经网络过程中将会用到的超参数。 ?...在深度学习中,权重初始化是非常重要的,tf.layers 默认会使用 glorot uniform intializer,就是我们熟知的 xavier 初始化,来初始化权重。...在 TensorFlow 上面实现,计算我们的策略损失可以使用 sparse_softmax_cross_entropy 函数(http://t.cn/RQIPRc7 )。...训练 Agent 我们现在已经准备好去训练 Agent 了。我们使用当前的状态输入到神经网络中,通过调用 tf.multinomial 函数获取我们的动作,然后指定该动作并保留状态,动作和未来的奖励。

    1K50

    从模型到算法,详解一套AI聊天机器人是如何诞生的

    在本篇文章中,当我提及“网络消费单词序列”或者“将单词传递至 RNN”时,我所指的是将单词嵌入传递至网络——而非对单词 ID 进行传递。...这里通常使用以下方法: 向编码器或 / 及解码器 RNN 中添加更多层。 使用双向编码器。考虑到正向生成结构,我们无法在解码器中实现这种双向特性。 尝试使用嵌入。...大家可以对单词嵌入进行预初始化,或者配合模型本身从零开始学习单词嵌入。 使用更为先进的回复生成规程——beamsearch。其基本思路并非“主动”生成回复,而是考虑长单词链的可能性并从中作出选择。...大家可以参阅以下资料了解如何解决这些问题: 在模型推理阶段变更目标函数 ; 在将 seq2seq 模型训练为强化学习代理时,如何引入人工指标并利用其充当奖励机制....在推理阶段,我们可以计算给定情景与全部可能答案之间的相似度,并从中选择相似度最高的答案。为了训练选择式模型,我们使用三元损失函数。

    4.6K60

    NLP 进行文本摘要的三种策略代码实现和对比:TextRank vs Seq2Seq vs BART

    本文将使用 Python 实现和对比解释 NLP中的3种不同文本摘要策略:老式的 TextRank(使用 gensim)、著名的 Seq2Seq(使基于 tensorflow)和最前沿的 BART(使用...预测时将使用开始标记开始预测,当结束标记出现时,预测文本将停止。 对于词嵌入这里有 2 个选项:从头开始训练我们的词嵌入模型或使用预训练的模型。...算法的高级(并且非常重)版本: 嵌入层,利用 GloVe 的预训练权重。...这些语言模型可以通过一次处理所有序列并映射单词之间的依赖关系来执行任何 NLP 任务,无论它们在文本中相距多远。在他们的词嵌入中,同一个词可以根据上下文有不同的向量。...总结 本文演示了如何将不同的 NLP 模型应用于文本摘要用例。这里比较了 3 种流行的方法:无监督 TextRank、两个不同版本的基于词嵌入的监督 Seq2Seq 和预训练 BART。

    86310

    NLP 进行文本摘要的三种策略代码实现和对比:TextRank vs Seq2Seq vs BART

    本文将使用 Python 实现和对比解释 NLP中的3 种不同文本摘要策略:老式的 TextRank(使用 gensim)、著名的 Seq2Seq(使基于 tensorflow)和最前沿的 BART(使用...预测时将使用开始标记开始预测,当结束标记出现时,预测文本将停止。 对于词嵌入这里有 2 个选项:从头开始训练我们的词嵌入模型或使用预训练的模型。...算法的高级(并且非常重)版本: 嵌入层,利用 GloVe 的预训练权重。...这些语言模型可以通过一次处理所有序列并映射单词之间的依赖关系来执行任何 NLP 任务,无论它们在文本中相距多远。在他们的词嵌入中,同一个词可以根据上下文有不同的向量。...这里比较了 3 种流行的方法:无监督 TextRank、两个不同版本的基于词嵌入的监督 Seq2Seq 和预训练 BART。并且还包含了特征工程、模型设计、评估和可视化。

    54620

    来,手把手教你训练一个克隆版的你

    正如我们所熟知的,编码器RNN包含了许多隐藏的状态向量,它们每个都表示从上一次时间步骤中获取的信息。例如,在第3步序中的隐藏状态向量是前三个单词的函数。...该单元的工作是使用向量表示v,并决定其词汇表中哪个单词是最适合输出响应的。从数学上讲,这就意味着我们计算词汇中的每一个单词的概率,并选择值的极大似然。 第二单元是向量表示v的函数,也是先前单元的输出。...然而,由于我们有这么多的单词和缩写,而不是在典型的预先训练的单词向量列表中,因此,生成我们自己的单词向量对于确保单词正确表达是至关重要的。 为了生成单词向量,我们使用了word2vec模型的经典方法。...函数从零开始对单词embeddings进行训练,因此我不会使用这些单词向量,尽管它们仍然是很好的实践* 用TensorFlow创建Seq2Seq模型 现在我们创建了数据集并生成了我们的单词向量,我们就可以继续编码...该模型的关键在于TensorFlow的嵌入_RNN_seq2seq()函数。你可以在这里找到文档。

    1.8K80

    fastText、TextCNN、TextRNN…这套NLP文本分类深度学习方法库供你选择

    注:一些util函数是在data_util.py中的;典型输入如:“x1 x2 x3 x4 x5 label 323434”,其中“x1,x2”是单词,“323434”是标签;它具有一个将预训练的单词加载和分配嵌入到模型的函数...,其中单词嵌入在word2vec或fastText中进行预先训练。...在我的训练数据中,对于每个样本来说,我有四个部分。每个部分具有相同的长度。我将四个部分形成一个单一的句子。...Vanilla E编码解码工作原理: 在解码器中,源语句将使用RNN作为固定大小向量(“思想向量”)进行编码: 当训练时,将使用另一个RNN尝试通过使用这个“思想向量”作为初始化状态获取一个单词,并从每个时间戳的解码器输入获取输入...然而,我还没有在实际任务中获得有用的结果。我们在模型中也使用并行的style.layer规范化、残余连接和掩码。 对于每个构建块,我们在下面的每个文件中包含测试函数,我们已经成功测试了每个小块。

    6.9K121

    聊聊HuggingFace Transformer

    调用pipeline函数指定预训练模型,有三个主要步骤: 输入的文本被预处理成模型(Model)可以理解的格式的数据(就是上述中Tokenizer组件的处理过程)。...嵌入层将标记化输入中的每个输入 ID 转换为表示关联标记的向量。 随后的层使用注意力机制操纵这些向量来产生句子的最终表示。..."Head"部分: 在HuggingFace Transformers架构中,"Head"部分指的是模型的顶层网络结构,用于微调(fine-tune)预训练的Transformer模型以适应特定的任务...这种模型结构允许在预训练模型的基础上,根据不同任务的需要,对模型进行微调,以提高性能。...解码器的作用是生成目标序列。 残差连接和层归一化: 在每个编码器和解码器层中,通常都会使用残差连接和层归一化来增强模型的训练稳定性和性能。

    82211

    在C#下使用TensorFlow.NET训练自己的数据集

    今天,我结合代码来详细介绍如何使用 SciSharp STACK 的 TensorFlow.NET 来训练CNN模型,该模型主要实现 图像的分类 ,可以直接移植该代码在 CPU 或 GPU 下使用,并针对你们自己本地的图像数据集进行训练和推理...实际使用中,如果你们需要训练自己的图像,只需要把训练的文件夹按照规定的顺序替换成你们自己的图片即可。...BlockingCollection,实现TensorFlow原生的队列管理器FIFOQueue; 在训练模型的时候,我们需要将样本从硬盘读取到内存之后,才能进行训练。...我们在会话中运行多个线程,并加入队列管理器进行线程间的文件入队出队操作,并限制队列容量,主线程可以利用队列中的数据进行训练,另一个线程进行本地文件的IO读取,这样可以实现数据的读取和模型的训练是异步的,...完整代码可以直接用于大家自己的数据集进行训练,已经在工业现场经过大量测试,可以在GPU或CPU环境下运行,只需要更换tensorflow.dll文件即可实现训练环境的切换。

    1.5K20

    nlp自然语言处理

    ,每个值都是一个词的概率值 prediction = tf.nn.softmax(tf.add(tf.mutmul(hidden,w2),b2)) # 损失函数  cross_entropy_loss...glove,在word2vector的基础上,统计同一词在一个上下文出现后在另一个上下文出现的概率 词向量输出位,共现方阵大小v*v(隐藏层输出) bert 知识图谱,rdf三元组(包含两点一线的结构...)、neo4j 图嵌入 类似词嵌入的方式,可以在分类算法中,把隐藏层输出作为图嵌入的表征 向量相似度 使用向量的模,点的距离 余弦夹角,one-hot向量的相似度0,适用于方向上的差异对大小不敏感的,类似用户评分等...向量的存储 elasticsearch 向量数据库 Faiss Annoy 语言模型 seq2seq transfomer 输入词向量,通过输出词向量 encoder=》decoder模型 bert,...预训练模型

    20940
    领券