首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

ImageDataGenerator

简单来说就是:ImageDataGenerator()是keras.preprocessing.image模块中的图片生成器,可以每一次给模型“喂”一个batch_size大小的样本数据,同时也可以在每一个批次中对这...改变图像内容的大小或模糊程度; 对比度变换(contrast): 在图像的HSV颜色空间,改变饱和度S和V亮度分量,保持色调H不变....如果是 None 或 0,不进行缩放,否则将数据乘以所提供的值(在应用任何其他转换之前)。...(四步走) (1)第一步:数据集的划分,得到x_train,y_train,x_test,y_test; (2)第二步:构造ImageDataGenerator对象,其中要进行某一些操作是通过在构造函数中的参数指定的...由于变换的种类很多,这里是随机使用某一种变换在图像上面 参数 x: 3D 张量,单张图像。(注意,这里是单张图片哦!) seed: 随机种子。 返回 输入的随机转换之后的版本(相同形状)。

1.7K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    hive sql(四)—— 所有用户中在今年10月份第一次购买商品的金额

    需求 请用sql写出所有用户中在今年10月份第一次购买商品的金额,表order字段: (购买用户:userid, 金额:money, 购买时间:paymenttime(格式:2017-10-01), 订单...row(s) 分析 1、date_format只能支持日期格式,比如2021-03-30 2、date_format(current_date(),"yyyy-10")是用yyyy取出年份,10是给的默认值...,其他玩法见扩展部分 3、所有用户10月份第一次购买,从需求来看,是对每个用户分组,对购买时间排序,所以这里需要对用户开窗,因为是第一次购买,所以排序是是正序 4、这里从数据来看,购买时间是日期,不是时间...,也就是说用户可能在同一天购买多次,如果是这样,则要求购买时间是时间类型,精确到秒 5、这里的数据的唯一性是通过时间约束的,所以不用去重 6、这里是一个正确的写法,先过滤数据,减少数据集——预处理、预聚合的会让数据处理的阶段更清晰...,在一个子查询中实现多种和阶段处理,需要衡量效率来决定,后面把这部分拿出来做个对比分析 7、这里order是关键字,所以用`号 扩展 date_format扩展玩法 hive (default)> select

    99020

    Deep learning with Python 学习笔记(2)

    (response map),表示这个过滤器模式在输入中不同位置的响应。...然后对所有这些向量进行空间重组,使其转换为形状为 (height, width, output_depth) 的 3D 输出特征图。输出特征图中的每个空间位置都对应于输入特征图中的相同位置 ?...这既可以增大网络容量,也可以进一步减小特征图的尺寸,使其在连接 Flatten 层时尺寸不会太大 在向网络中输入数据时,我们首先需要将数据进行预处理,将其格式化为浮点数张量,JPEG数据处理步骤如下 读取图像...其目标是,模型在训练时不会两次查看完全相同的图像。...这让模型能够观察到数据的更多内容,从而具有更好的泛化能力 在 Keras 中,这可以通过对 ImageDataGenerator 实例读取的图像执行多次随机变换来实现 Demo from keras.preprocessing.image

    69110

    深度学习搞CV?图像数据不足咋办?看这里!

    ()是keras.preprocessing.image模块中的图片生成器,同时也可以在batch中对数据进行增强,扩充数据集大小,增强模型的泛化能力。...随机缩放范围 channel_shift_range=0.0, #浮点数。随机通道转换的范围。...对代码中的详细内容,我们且看第二部分 二.详解单幅图像增强 这里先说下对图像和标签一起增强的步骤,有人该问为什么还要标签了。...,着重说下这里,是自己不懂的部分: # 获得文件名(不包含后缀) # rindex("/") 是返回'/'在字符串中最后一次出现的索引 midname = imgname[imgname.rindex(...='png', imgnum=30): 四.图像增强之批处理 这块的内容,不想做太多的解释了,只是由单幅图像的读取,改为对文件夹内所有图片的读取。

    57020

    人工智能|利用keras和tensorflow探索数据增强

    将扩充后的数据存储在内存中既不实用也不高效,这就是keras中的imagedatagenerator类(也包括在tensorflow的高级api:tensorflow.keras中)发挥作用的地方。...由生成器生成的输出图像将具有与输入图像相同的输出尺寸 解决方案 下面是一个辅助脚本,我们将使用它来直观地显示使用ImageDataGenerator类可以实现的所有内容。...这与旋转中的不同,在剪切变换中,我们固定一个轴并将图像以一定的角度拉伸,称为剪切角。这会在图像中创建一种“拉伸”,这在旋转中是看不到的。shear_range以度为单位指定倾斜角度。...通道移位通过从channel _shift_range(通道移位范围)指定的范围中选择的随机值随机移位通道值。...可以通过将这些变量的布尔值传递给ImageDataGenerator类来设置这些变量。 还可以通过指定rescale参数来重新缩放值,该参数乘以所有值。

    1.2K20

    深度学习CV?图像数据不足咋办?看这里

    ()是keras.preprocessing.image模块中的图片生成器,同时也可以在batch中对数据进行增强,扩充数据集大小,增强模型的泛化能力。...随机缩放范围 channel_shift_range=0.0, #浮点数。随机通道转换的范围。...对代码中的详细内容,我们且看第二部分 二.详解单幅图像增强 这里先说下对图像和标签一起增强的步骤,有人该问为什么还要标签了。...,着重说下这里,是自己不懂的部分: # 获得文件名(不包含后缀) # rindex("/") 是返回'/'在字符串中最后一次出现的索引 midname = imgname[imgname.rindex(...='png', imgnum=): 四.图像增强之批处理 这块的内容,不想做太多的解释了,只是由单幅图像的读取,改为对文件夹内所有图片的读取。

    88810

    轻松使用TensorFlow进行数据增强

    当我们没有大量不同的训练数据时,我们该怎么办?这是在TensorFlow中使用数据增强在模型训练期间执行内存中图像转换以帮助克服此数据障碍的快速介绍。 ?...中的图像增强 在TensorFlow中,使用ImageDataGenerator类完成数据扩充。...整个数据集在每个时期循环,并且数据集中的图像根据选择的选项和值进行转换。这些转换是在内存中执行的,因此不需要其他存储(尽管save_to_dir如果需要,该参数可用于将增强的图像保存到磁盘)。...rotation_range-随机旋转的度数范围;在上述示例中为20度 width_shift_range-总宽度的一部分(如果值随机地水平转换图像;上例中为0.2 height_shift_range...-总高度的一部分(如果值随机平移图像;上例中为0.2 shear_range-逆时针方向的剪切角,以度为单位,用于剪切转换;上例中为0.2 zoom_range-随机缩放范围

    86720

    Google全新AI实战课发布:从原理到代码,手把手带你入门机器学习

    和长颈鹿被关进冰箱一样,这得分四步走: 通过对训练图像进行随机转换,来探索数据增强的玩法 在我们数据处理的过程中应用数据增强 在转换中加入dropout 重新训练模型,评估损失和精确度 Let’s...数据增强の探索 数据增强是减少视觉模型过拟合的基本方法了,因为我们手头的训练实例为数不多,为了充分利用,我们可通过一些随机的变换“增强”它们,对模型来说,这是不同的图像~ 这可以通过在ImageDataGenerator...实例读取的图像上增加一些随机转换来实现,比如: 1from keras.preprocessing.image import ImageDataGenerator 2 3datagen = ImageDataGenerator...width_shift和height_shift是个范围,指的总宽度或高度的一部分,图像可在此范围内垂直或水平随机转换。 shear_range用于随机剪切。...这一次,我们训练全部的2000张图片,训练了30轮,并对验证了所有的1000个测试图像。 这可能需要几分钟的时间,检验一下你是否能自己编写代码了。

    70410

    从零开始学keras(七)之kaggle猫狗分类器

    特 别是在计算机视觉领域,许多预训练的模型(通常都是在 ImageNet 数据集上训练得到的)现在都可以公开下载,并可以用于在数据很少的情况下构建强大的视觉模型。这是下一节的内容。...注意网络中特征图的深度在逐渐增大(从 32 增大到 128),而特征图的尺寸在逐渐减小(从148×148 减小到 7×7)。这几乎是所有卷积神经网络的模式。   ...使用数据增强   过拟合的原因是学习样本太少,导致无法训练出能够泛化到新数据的模型。如果拥有无限的数据,那么模型能够观察到数据分布的所有内容,这样就永远不会过拟合。...数据增强是从现有的训练样本中生成更多的训练数据,其方法是利用多种能够生成可信图像的随机变换来增加(augment)样本。其目标是,模型在训练时不会两次查看完全相同的图像。...这让模型能够观察到数据的更多内容,从而具有更好的泛化能力。   在 Keras中,这可以通过对 ImageDataGenerator实例读取的图像执行多次随机变换来实现。我们先来看一个例子。

    1.2K10

    手把手教程:如何从零开始训练 TF 模型并在安卓系统上运行

    下载我的示例代码并执行以下操作: 在 colab 中运行:使用 tf.keras 的训练模型,并将 keras 模型转换为 tflite(链接到 Colab notebook)。...确保在类中设置的维度与模型预期的维度匹配: 28x28x1 的图像 10 位数字的 10 个类:0、1、2、3…9 要对图像进行分类,请执行以下步骤: 预处理输入图像。...后处理输出结果以在 UI 中显示。我们得到的结果有 10 种可能,我们将选择在 UI 中显示概率最高的数字。 ?...过程中的挑战 以下是你可能遇到的挑战: 在 tflite 转换期间,如果出现「tflite 不支持某个操作」的错误,则应请求 tensorflow 团队添加该操作或自己创建自定义运算符。...有时,转换似乎是成功的,但转换后的模型却不起作用:例如,转换后的分类器可能在正负测试中以~0.5 的精度随机分类。(我在 tf 1.10 中遇到了这个错误,后来在 tf1.12 中修复了它)。

    2.2K20

    数据预处理-对图片扩展的处理方法

    Keras非常便捷的提供了图片预处理的类--ImageDataGenerator 可以用这个图片生成器生成一个batch周期内的数据,它支持实时的数据扩展,训练的时候会无限生成数据,一直到达设定的epoch...ImageDataGeneoator()常用参数: rotation_range:整数,数据扩展时图片随机转动的角度 width_shift_range:浮点数,图片宽度的某个比例,数据扩展时图片水...:浮点数或形如[lower,upper]的列表,随机缩放的幅度。.../归一化后的数据,在一个无限循环中无限产生数据 图片数据扩展举例: 在数据集不够多的情况下,可以使用ImageDataGenerator()来扩大数据集防止搭建的网络出现过拟合现象。...实时生成数据集用于训练 经常会和函数式模型Model()的API---.fit_generator()配合使用,在训练中实时地生成数据。

    1.2K40

    指南:使用Keras和TensorFlow探索数据增强

    将扩充后的数据存储在内存中既不实际也不高效,这就是Keras的Image Data Generator类(也包含在TensorFlow的高级API:tensorflow.keras中)发挥作用的地方。...下面是一个辅助脚本,我们将使用它来可视化显示使用Image Data Generator类可以实现的所有功能。...Shear Intensity使图像的形状倾斜。这与旋转不同,因为在Shear Intensity中,我们固定一根轴,将图像按照一定的角度进行拉伸,即Shear Intensity。...这会在图像中产生某种“拉伸”,这在旋转中是无法看到的。 shear_range以度为单位指定倾斜角度。...Channel Shift将通道值随机移位一个随机值,该值是从channel_shift_range指定的范围中选择的。

    1.8K31

    【TensorFlow2.0】数据读取与使用方式

    作者&编辑 | 汤兴旺 在TensorFlow2.0中,对数据处理的方法有很多种,下面我主要介绍两种我自认为最好用的数据预处理的方法。...这个步骤虽然看起来比较复杂,但在TensorFlow2.0的高级API Keras中有个比较好用的图像处理的类ImageDataGenerator,它可以将本地图像文件自动转换为处理好的张量。...这些参数中的directory一定要弄清楚,它是指类别文件夹的上一层文件夹,在该数据集中,类别文件夹为smile和neutral,它的上一级文件夹是train。...在该分类任务中标签就是smile和neutral。 以上就是在TensorFlow2.0中利用Keras这个高级API来对分类任务中的数据进行预处理。...2 使用Dataset类对数据预处理 由于该方法在TensorFlow1.x版本中也有,大家可以比较查看2.0相对于1.x版本的改动地方。

    4.5K20

    开发 | 图片数据集太少?看我七十二变,Keras Image Data Augmentation 各参数详解

    但是面对ImageDataGenerator中众多的参数,每个参数所得到的效果分别是怎样的呢?...本文针对Keras中ImageDataGenerator的各项参数数值的效果进行了详细解释,为各位深度学习研究者们提供一个参考。...的作用是随机对图片执行水平翻转操作,意味着不一定对所有图片都会执行水平翻转,每次生成均是随机选取图片进行翻转。...图17 应该是在保存到本地的时候,keras把图像像素值恢复为原来的尺度了,在内存中查看则不会。...上面所有内容已经公布在我的github(https://github.com/JustinhoCHN/keras-image-data-augmentation)上面,附上了实验时的jupyter notebook

    1.1K100

    AI:是猫还是狗,这是个问题

    由于我们这里是一张又一张的图片,jpg 格式,这可不是我们网络所喜欢的格式,需要进行处理,读出图片,将其解码为 RGB 像素,再将 RGB 中的像素值转换成浮点数进行计算,又由于我们的网络对于处理 0-...1 之间的数效果更好,因此我们需要将像素值转换区间,即从 0-255 转换到 0-1,是不是觉得有点麻烦,确实!...训练精度逐渐接近百分之百,提醒我们注意过拟合的危险;训练精度在第五次(或六次)次后就维持在 70%左右不再上升了。...我们的做法就是在现有的训练数据中生成更多的训练数据,就是增加一些随机变换,这种随机变化生成的图片依然要保证是有效的。这样模型在训练的时候就可以看到不同的更多的图像了,这就使得训练出的模型泛化能力更好。...怎么做呢,就可以把图片进行随机的旋转,缩放,平移和翻转等,ImageDataGenerator 提供了这样的能力。

    65500

    如何使用机器学习来检测手机上的聊天屏幕截图

    CNN的输入层将是一幅图像,输出层将仅包含一个神经元,告诉输入图像是正常图像还是聊天屏幕截图。在接下来的部分中,将介绍构建模型的所有细节。 数据采集 在机器学习中,一切都始于数据。...因此从不同的消息传递应用程序(如WhatsApp,Messenger,Instagram等)中收集了与朋友聊天的屏幕截图。从手机和互联网上收集了一些人,地点,风景的随机图像。总共拍摄了660张图像。...在卷积基础中,使用了两个卷积块,每个包含32个过滤器。内核大小为3 * 3。第一卷积层的输入尺寸为64 * 64 * 3(大小为64 px * 64 px的 RGB图像)。...首先创建一个ImageDataGenerator对象。在这个对象的帮助下,使用了缩放,剪切,翻转转换来增强数据。为了规范化像素值,应将图像重新缩放为1 / 255.0倍。...https://github.com/Suji04/Chat_ScreenShot_Classifier 要使用此模型对手机上某个文件夹的所有图像进行分类, 只需要遍历该文件夹并将一次图像传递给该模型即可

    2.1K10
    领券