首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Seaborn 基本语法及特点

Seaborn 基于 Matplotlib,Matplotlib 中大多数绘图函数的参数都可在 Seaborn 绘图函数中使用,对 Python 的其他库(比如 Numpy/Pandas/Scipy)有很好的支持...Seaborn 中的数据分布型图绘制函数: 分类数据型图 在面对数据组中具有离散型变量(分类变量)的情况时,我们可使用以 X 轴或 Y 轴作为分类轴的绘图函数来绘制分类数据型图。...Seaborn 中的回归分析型图绘制函数: 多子图网格型图 相比 Matplotlib,Seaborn 提供了多个子图网格绘图函数,它们可快速实现分面图的展示。...FacetGrid () 函数 Seaborn 提供的 FacetGrid () 函数可实现数据集中任一变量的分布和数据集子集中多个变量之间关系的可视化展示。...在 PairGrid () 函数中,每个行和列都会被分配一个不同的变量,这就导致绘制结果为显示数据集中成对变量间关系的图。这种图也被称为“散点图矩阵”。

27330
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    seaborn更高效的统计图表制作工具

    seaborn是建立在matplotlib上的一个高度封装的模块,针对数据的统计学描述,统计了一系列相关的可视化功能。 在该模块中,针对常用的统计图表,分为了以下3大类别 ?...seaborn采用了类似R语言ggplot2的属性映射和分面思想,可以很方便的将数据框的不同列映射为不同的属性,用法如下 1....属性映射 hue参数用于映射颜色属性,style颜色用于映射形状属性,size参数用于映射点的大小属性,这些参数在大类和子类函数中同时适用,用法如下 >>> sns.relplot(data=df, x...分面 通过row和col参数将数据框的列映射为不同的分面,该方法仅在大类函数中适用,用法如下 >>> sns.relplot(data=df, x='total_bill', y='tip', hue=...除了以上功能外,seaborn还有许多其他的功能,后续在详细介绍。 ·end· —如果喜欢,快分享给你的朋友们吧—

    1.3K20

    如何使用Python创建美观而有见地的图表

    作者 | Fabian Bosler 来源 | Medium 在今天的文章中,将研究使用Python绘制数据的三种不同方式。将通过利用《 2019年世界幸福报告》中的数据来做到这一点。...报告中的幸福定义为对“ Cantril阶梯问题”的回答,要求被调查者以0到10的等级评估他们今天的生活,最糟糕的寿命为0,最可能的寿命为10。 在整篇文章中,将Life Ladder用作目标变量。...看来人均GDP越高,幸福感就越强 配对图 Seaborn对图在一个大网格中绘制了两个变量散点图的所有组合。通常感觉这有点信息过载,但是它可以帮助发现模式。...FacetGrid Seaborn的FacetGrid是使用Seaborn的最令人信服的论据之一,因为它使创建多图变得轻而易举。通过对图,已经看到了FacetGrid的示例。...的直方图 FacetGrid — 带注释的KDE图 也可以向网格中的每个图表添加构面特定的符号。

    3K20

    seaborn的介绍

    你会得到最出seaborn的,如果你的数据集,这种方式组织,并且在更详细的解释如下。 我们绘制了一个带有多个语义变量的分面散点图。 此特定图显示了提示数据集中五个变量之间的关系。...一个分类变量将数据集拆分为两个不同的轴(面),另一个确定每个点的颜色和形状。 所有这一切都是通过单次调用seaborn函数完成的relplot()。...为了做这些事情,他们使用了seaborn FacetGrid。 每个不同的图形级别图kind将特定的“轴级”功能与FacetGrid对象组合在一起。...可视化数据集结构 在seaborn中还有另外两种图形级函数可用于使用多个图形进行可视化。它们各自面向照亮数据集的结构。一,jointplot()专注于单一关系: ?...图形级函数的一些自定义可以通过传递给它的附加参数来完成FacetGrid,您可以使用该对象上的方法来控制图形的许多其他属性。

    4K20

    用Seaborn实现高级数据分析与可视化

    多变量分析:揭示更复杂的关系对于多变量分析,Seaborn提供了强大的FacetGrid功能,使得我们能够在不同条件下进行变量之间关系的对比。...基于类别的回归模型分析Seaborn还提供了lmplot等功能,用于在分组数据上进行回归分析。我们可以通过这种方式来探讨不同类别的回归模型。...高级可视化技巧与自定义风格在掌握了Seaborn的基础和高级可视化技术之后,我们还可以进一步提升图形的美观性和信息表达能力。...使用FacetGrid进行条件绘图FacetGrid是Seaborn的强大工具之一,允许我们在多个条件下绘制一组图表。这对于探索高维数据中的交互作用非常有用。...Seaborn作为Python生态中的一部分,提供了极大的灵活性和可扩展性。无论是在简单的数据探索,还是在复杂的多维数据分析中,它都能够帮助你揭示数据背后的故事。

    22320

    seaborn从入门到精通02-绘图功能概述

    例如,我们不需要将每种企鹅的三个分布叠加在同一个轴上,而是可以通过在图的列上绘制每个分布来“面化”它们: penguins = sns.load_dataset(“penguins”,cache=True...在使用图形级函数时,有几个关键的区别。首先,函数本身具有控制图形大小的参数(尽管这些实际上是管理图形的底层FacetGrid的参数)。...其次,这些参数,高度和方面,在matplotlib中参数化的大小与宽度、高度略有不同(使用seaborn参数,宽度=高度*方面)。最重要的是,这些参数对应于每个子图的大小,而不是整个图形的大小。...结果是,你可以分配面形变量,而不需要停下来考虑如何调整总图形大小。缺点是,当您确实想要更改图形大小时,您需要记住,事情的工作方式与在matplotlib中的工作方式略有不同。...seaborn中两个重要的标绘函数不完全适合上面讨论的分类方案。这些函数jointplot()和pairplot()使用来自不同模块的多种图来在单个图中表示数据集的多个方面。

    30230

    数据可视化基础与应用-04-seaborn库从入门到精通01-02

    主要介绍基于seaborn实现数据可视化。...在幕后,seaborn处理从数据框架中的值到matplotlib能够理解的参数的转换。这种声明性方法使您能够将注意力集中在想要回答的问题上,而不是集中在如何控制matplotlib的细节上。...例如,我们不需要将每种企鹅的三个分布叠加在同一个轴上,而是可以通过在图的列上绘制每个分布来“面化”它们: penguins = sns.load_dataset(“penguins”,cache=True...结果是,你可以分配面形变量,而不需要停下来考虑如何调整总图形大小。缺点是,当您确实想要更改图形大小时,您需要记住,事情的工作方式与在matplotlib中的工作方式略有不同。...seaborn中两个重要的标绘函数不完全适合上面讨论的分类方案。这些函数jointplot()和pairplot()使用来自不同模块的多种图来在单个图中表示数据集的多个方面。

    22410

    seaborn从入门到精通03-绘图功能实现05-构建结构化的网格绘图

    seaborn从入门到精通03-绘图功能实现05-构建结构化的网格绘图 总结 本文主要是seaborn从入门到精通系列第3篇,本文介绍了seaborn的绘图功能实现,本文是FacetGrid和PairGrid...图形级函数构建在本章教程中讨论的对象之上。在大多数情况下,您将希望使用这些函数。它们负责一些重要的簿记,使每个网格中的多个图同步。本章解释了底层对象是如何工作的,这可能对高级应用程序很有用。...为它提供一个绘图函数和数据框架中要绘图的变量名。...让我们用直方图来看看小费在每个子集中的分布情况: g=sns.FacetGrid(tips, col="time", row="sex") g.map(sns.histplot, "tip")...理解FacetGrid和PairGrid之间的区别是很重要的。在前者中,每个方面都表现出相同的关系,条件是其他变量的不同水平。在后者中,每个图都显示了不同的关系(尽管上三角形和下三角形将有镜像图)。

    21920

    ​再见 Seaborn!Altair 数据可视化已超神

    这种声明式方法的唯一缺点可能是用户对自定义可视化的控制较少,这对于大多数不熟悉编码部分的用户来说是可以的。 在本文中,我们将 Seaborn 与 Altair 进行比较。...在 Seaborn 中,我们可以使用 "aspect" 设置来控制绘图的纵横比。但是,在 Altair 中,我们还可以通过传递 0 到 1 之间的值来控制点的不透明度值(1 表示完全不透明)。...在这里,我们可以通过在"mark_bar"命令中传递一个值来自定义条形的大小,如下所示。...我们可以通过调整 bin 大小在 Seaborn 中获得相同的图。...另一方面,Seaborn 不提供与任何图表的交互性。如果你想过滤掉绘图本身内部的数据并专注于绘图中感兴趣的区域/区域,就不建议使用Seaborn。

    9.6K30

    70个精美图快速上手seaborn!

    图片 Seaborn简介 Seaborn是一个基于Python的数据可视化库,它建立在Matplotlib之上,提供了一种更简单、更美观的方式来创建统计图形。...3: iris = sns.load_dataset("iris") # 需要网络环境 iris Out3: 图片 下面的图形主要是基于两份数据进行绘制,包含的图形有: 散点图sns.scatter...") # 添加标题 plt.show() 图片 分类散点图sns.stripplot 默认情况 在默认情况下,只会对数据中数值型字段进行绘图: In 8: sns.stripplot(data=tips...element="poly") # bars step poly ;控制密度图显示方式 plt.show() 图片 分布图sns.displot 基础分布图 默认情况下是统计DataFrame中某个属性中不同取值出现的次数...如何理解seaborn.FacetGrid函数?

    2.6K150

    百川归海,四类图统揽统计图:Seaborn|可视化系列03

    本文内容框架 Seaborn简介 Matplotlib虽然提供了丰富而强大的接口用于数据的可视化,但在展现多类数据关系时,需要较多数据处理过程,语句就变得繁琐,因此seaborn针对这类需求,基于matplotlib...对于单一变量,我们可以统计出其在列中的出现次数,绘制柱状图、饼图等,用Matplotlib绘制需要自己做数据透视或value_counts()操作。...,让我们节约在绘图上的时间,更好地探索数据中的信息。...因为seaborn是基于matplotlib的,两者可以很好地协作,通过调用不同层级的接口来实现更精细的需求。...seaborn目前是0.10.1版本,例子和API文档都还不够丰富,如很多绘图的API只有一段文字说明,没有绘制效果的例子;又如catplot的文档在最上面列出了hue,在详细解释部分没有hue。

    3.1K30

    seaborn从入门到精通04-主题颜色设置与总结

    重点参考连接 参考 seaborn官方 seaborn官方介绍 seaborn可视化入门 【宝藏级】全网最全的Seaborn详细教程-数据分析必备手册(2万字总结) Seaborn常见绘图总结...Python-Seaborn绘制图形 FacetGrid 主题(style) seaborn设置风格的方法主要有三种: set,通用设置接口 set_style,风格专用设置接口,设置后全局风格随之改变...axes_style,设置当前图(axes级)的风格,同时返回设置后的风格系列参数,支持with关键字用法 seaborn中主要有以下几个主题: sns.set_style(“whitegrid...颜色配置的方法有多种,常用方法包括以下两个: color_palette,基于RGB原理设置颜色的接口,可接收一个调色板对象作为参数,同时可以设置颜色数量 hls_palette,基于Hue(色相)...columns=["position", "step", "walk"]) # Initialize a grid of plots with an Axes for each walk grid = sns.FacetGrid

    47310

    万字长文 | 超全代码详解Python制作精美炫酷图表教程

    Seaborn 学习Seaborn能够节省很多精力。Seaborn可以抽象出大量的微调。毫无疑问,这使得图表在美观上得到巨大的改善。然而,它也是构建在matplotlib之上的。...小提琴图在绘制大洲与生活阶梯的关系图时,用人均GDP的平均值对数据进行分组。人均GDP越高,幸福指数就越高 配对图 Seaborn配对图是在一个大网格中绘制双变量散点图的所有组合。...Seaborn散点图网格中,所有选定的变量都分散在网格的下半部分和上半部分,对角线包含Kde图。...FacetGrids 对我来说,Seaborn的FacetGrid是证明它好用最有说服力的证据之一,因为它能轻而易举地创建多图表。通过配对图,我们已经看到了FacetGrid的一个示例。...按大洲划分的生活阶梯直方图 FacetGrid— 带注释的KDE图 还可以向网格中的每个图表添加特定的注释。以下示例将平均值和标准偏差以及在平均值处绘制的垂直线相加(代码如下)。 ?

    3.2K10
    领券