01.前言 我们希望编写一个简单的算法用来识别狗狗的品种,假设我们想知道这只狗是什么品种。 ? 算法该如何分辨这只狗可能属于哪个品种?...卷积神经网络(CNN)是一种用于图像分类的神经网络架构,通常包含卷积层和池化层两种类型。卷积层接受输入图像并将其抽象为简单的特征图,池化层则是为了降低特征图的维数。...因此如果我们已经找到可以正确识别狗的模型,只需要在其之上添加一层来预测狗的品种就可以了,那我们该 怎么操作呢? 为了最大程度地利用转移学习,我们需要仔细考虑转移到模型中的“学习”。...从预先训练的模型中转移学习Keras是一个基于Python的深度学习库,已经为我们编译了多个训练好了的模型。在本练习中,我们将研究两种常见的预训练模型:VGG16和Resnet50。...最重要的是,我们花费了很少的时间来构建CNN架构,并且使用的GPU功能也很少。 使用预先训练的模型大大的节省我们的时间。在此过程中,改进了识别狗狗的分类模型。但是,该模型仍然有过拟合的趋势。
本期我们将一起学习如何使用计算机视觉技术识别棋子及其在棋盘上的位置 我们利用计算机视觉技术和卷积神经网络(CNN)为这个项目创建分类算法,并确定棋子在棋盘上的位置。...最终的应用程序会保存整个图像并可视化的表现出来,同时输出棋盘的2D图像以查看结果。 (左)实时摄像机进给的帧和棋盘的(右)二维图像 01....总结:这花费了我们很多时间,但是这使得训练图像尽可能地接近在应用程序中使用时所看到的图像。...最后,我通过将裁剪后的图像分成带标签的文件夹来对它们进行分类。 02....此应用程序保存实时视频流中的原始帧,每个正方形的64个裁剪图像以及棋盘的最终2D图像。 print('Working...
基于物品的协同过滤(item-based collaborative filtering)算法是目前业界应用最多的算法。...因此,著名的电子商务公司亚马逊提出了另一个算法——基于物品的协同过滤算法。 基于物品的协同过滤算法 (简称ItemCF)给用户推荐那些和他们之前喜欢的物品相似的物品。...基于物品的协同过滤算法可以利用用户的历史行为给推荐结果提供推荐解释,比如给用户推荐《天龙八部》的解释可以是因为用户之前喜欢《射雕英雄传》。...如2-10所示, Hulu在个性化视频推荐利用ItemCF给每个推荐结果提供了一个推荐解释,而用于解释的视频都是用户之前观看或 者收藏过的视频。 ? 基于物品的协同过滤算法主要分为两步。...一般来说,同系列的电影、同主角的电影、同风格的电影、同国家和地区的电影会有比较大的相似度。 ? ? ? ? 图2-12是一个基于物品推荐的简单例子。
然后用基于人体比例的方法初步判断跌倒情况,再用基于运动趋势的精准判断跌倒情况。算法总体效果可以,误检较少。...,基于人体比例的方法初步判断跌倒情况,再用基于运动趋势的精准判断跌倒情况。...灰度与彩色之间是可以相互转化的,由灰度化转为彩色的称为伪彩色处理过程;由彩色转化为灰度的叫做灰度化处理过程。相应地,数字图像可区分为灰度图像和彩色图像。...(2)目标区域提取:将 N帧图像与N+1帧图像相减,将 N+1帧图像与N帧图像相减,再将两相减后图像相加,便得到目标区域如图1所示,这样做的目的是增加目标区域的对比。...然后用基于人体比例的方法初步判断跌倒情况,再用基SVM精准判断跌倒情况。算法总体效果可以,误检较少。
简介 TensorFlow和Keras最常见的用途之一是图像识别/分类。通过本文,您将了解如何使用Keras达到这一目的。 定义 如果您不了解图像识别的基本概念,将很难完全理解本文的内容。...其设计原则旨在用户友好和模块化,尽可能地简化TensorFlow的强大功能,在Python下使用无需过多的修改和配置 图像识别(分类) 图像识别是指将图像作为输入传入神经网络并输出该图像的某类标签。...在图像识别的特定场景下,特征是某个对象的一组像素,如边缘和角点,网络将通过分析它们来进行模式识别。 特征识别(或特征提取)是从输入图像中拉取相关特征以便分析的过程。...许多图像包含相应的注解和元数据,有助于神经网络获取相关特征。 神经网络如何学习识别图像 直观地了解神经网络如何识别图像将有助于实现神经网络模型,因此在接下来的几节中将简要介绍图像识别过程。...池化对图像进行下采样,即获取图像信息并压缩,使其变小。池化过程使网络更加灵活,更擅长基于相关特征来识别对象/图像。 当观察图像时,我们通常不关心背景信息,只关注我们关心的特征,例如人类或动物。
例如:通过CH32V307芯片驱动OV2640摄像头采集指示灯的运行状态,后续通过图像识别算法提取颜色特征,并将结果上报到云平台。...近来,在官方例程的基础上进行了优化改进,解决了图像识别算法泛化能力差等弊端,具体内容如下所示:硬件 硬件结构极为简单,主要包含主控CH32V307、ESP8266 wifi模块、ST7789...图片优化改进 嵌入式设备的应用场景一般较为复杂,很难通过颜色识别算法提取图像的全部特征,例如:智能门禁系统中涉及的人脸识别,自动抄表系统涉及的文字信息提取等。...因此,近来想要把人工智能算法嵌入到边缘计算端,最终实现云-边-端的高效协同,优化嵌入式设备的执行速度以及图像识别准确率。...流程框架:通过OV2640采集手机屏幕图像,然后通过UART6串口将RGB565图像数据传输到电脑端并保存为DAT文件,后续采用matlab对图像进行可视化,最后调用yolov5深度学习模型对结果进行识别
推荐阅读时间:6min~8min 文章内容:基于物品的协同过滤 在了解了基于用户的协同过滤之后,还有基于物品的的协同过滤。它们的原理非常类似。...在电商平台中经常看到“看了又看”,“看过它的人还看”等等推荐,这些推荐背后对应的算法大多数都是基于物品的协同过滤。 ?...原理简介 介绍基于物品的协同过滤之前,先来看下基于用户的协同过滤可能带来的问题。...,而且一般都是一些热门物品,对发现用户兴趣帮助也不大 基于物品的协同过滤就是根据用户历史行为来计算出物品之间的相似度,然后会用户推荐跟他消费过的物品类似的物品。...总结 基于物品的协同过滤,首先会计算不同物品之间的相似度,然后根据根据不同的应用场景选择不同的推荐结果,“相关推荐”会直接选用与当前物品相似度最高的 Top N,个性化推荐会根据用户已消费过的物品来计算对每个物品的预测评分
一、图像识别问题简介与经典数据集视觉是人类认识世界非常重要的一种知觉。对于人类来说,通过识别手写体数字、识别图片中的物体或者是找出4%图片中人脸的轮廓都是非常简单的任务。...然而对于计算机而言,让计算机识别图片中的内容就不是一件容易的事情了。图像识别问题希望借助计算机程序来处理、分析和理解图片中的内容,使得计算机可以从图片中自动识别各种不同模式的目标和对象。...MNIST手写体识别数据集是一个相对简单的数据集,在其他更加复杂的图像识别数据集上,卷积神经网络有更加突出的表现。CIFAR就是一个影响力很大的图像分类数据集。...ImageNet是一个基于WordNet的大型图像数据库。在ImageNet中,将近1500万图片被关联到了WordNet的大约20000个名词同义词集上。...ILSVRC2012图像分类数据集的任务和CIFAR数据集时基本一致的,也是识别图像中的主要物体。
伪代码实现,这里最终通过cos函数计算相似度 1.基于用户,需要一个用户相似度矩阵 首先要建立物品-用户集合的倒排索引 然后循环这个索引的所有用户,排除自己和自己,进行+1 Set<Entry<String...sparseMatrix[userID.get(user_u)][userID.get(user_v)] += 1; //计算用户u与用户v都有正反馈的物品总数...} } } 然后 cos计算 2.基于物品,协同过滤正好反过来,建立用户的相似矩阵 首先要建立用户-物品集合的倒排索引 然后循环这个索引的所有物品
在之前的文章中介绍了基于用户的协同过滤python代码实现方法(戳?基于用户的协同过滤),本次接着来看基于物品的协同过滤如何用python实现。...1 原理回顾 基于物品的协同过滤算法中心思想,就是给用户推荐与他们喜欢的商品类似的商品。...因此在实现过程中有如下几步: Step 1 :将每个用户与他喜欢的物品建立一个对应表 (图片来自网络) Step 2:根据第一步中的对应表,建立物品间的关系矩阵C,然后再建立相似度矩阵W (图片来自网络...) 上图中矩阵C记录了同时喜欢两个物品的用户数,这样我们就可以得到物品之间的相似度矩阵W。...、物品关系矩阵C及相似度矩阵W,代码中分别为movie_popular,及过程中的itemSim和最终的itemSim。
本期我们将一起学习如何使用计算机视觉技术识别棋子及其在棋盘上的位置 ? 我们利用计算机视觉技术和卷积神经网络(CNN)为这个项目创建分类算法,并确定棋子在棋盘上的位置。...最终的应用程序会保存整个图像并可视化的表现出来,同时输出棋盘的2D图像以查看结果。 ? (左)实时摄像机进给的帧和棋盘的(右)二维图像 01....总结:这花费了我们很多时间,但是这使得训练图像尽可能地接近在应用程序中使用时所看到的图像。 ?...最后,我通过将裁剪后的图像分成带标签的文件夹来对它们进行分类。 02....此应用程序保存实时视频流中的原始帧,每个正方形的64个裁剪图像以及棋盘的最终2D图像。 print('Working...
感谢 @zcl1122指出的倒数第三节代码中的i错误的被简书转行成大写的I的问题。 上一节粗略的描述了如何关于图像识别,抠图,分类的理论相关,本节主要用代码,来和大家一起分析每一步骤。...,使他满足input的条件 #我们用的TensorFlow下的一个集成包slim,比tensor要更加轻便 slim = tf.contrib.slim #训练数据中包含了一下已知的类别,也就是我们可以识别出以下的东西...,不过后续我们将自己自己训练自己的模型,来识别自己想识别的东西 l_VOC_CLASS = [ 'aeroplane', 'bicycle', 'bird', 'boat...tf.train.Saver() saver.restore(isess, ckpt_filename) ssd_anchors = ssd_net.anchors(net_shape) ---- 下面让我们把SSD识别出来的结果在图片中表示出来...下面在拓展一下视频的处理方式,其实相关的内容是一致的。
方面了解不多,想要修改匹配方法或者增加一些功能比较困难,于是萌生了自己实现基于图像对比的自动化的想法。...二、 模板匹配 模板匹配(matchTemplate)是一种最具代表性的图像识别方法。...在一群牛中找到了一只羊的"最佳匹配" 三、 特征识别 人眼在识别物体时,会根据图像的局部特征来判断整体,比如图像的边缘轮廓、角、斑点等等。...基于图像对比的脚本更是如此,比如执行一次点击后,希望知道是否操作成功,也是非常困难的一件事情,需要脚本层去解决。...所以我认为基于图像的自动化比较适用场景为: 1、 UI 比较稳定 2、 操作流程比较简单 3、或者弱业务流程的自动化,如随便点击测试 后记 虽然模板匹配 特征点识别相似的图片,但依靠某种算法的特征点还是太薄弱了
1、点击[命令行窗口] 2、按<Enter>键 3、点击[命令行窗口] 4、按<Enter>键
structure.png LBP是一种常规的人脸识别使用的特征,系统架构如上图所示,主要分为三个部分: 滑动框:滑动框在图片上滑动,产生不同的子图 LBP特征提取器:针对滑动框产生的子图,计算LBP特征...c_lbp.png LBP使用如图所示8个实心点位置的像素计算,其中四个红色实心点不落在像素上,使用双线性插值的方法计算对应的值,最后带入原始LBP的计算方法中计算中间像素的值。...该LBP使用(P,R)表示,P表示带入计算的像素点数,R表示半径,如上图即为(8,2) 系统使用的LBP 系统使用的LBP表示为LBP^{u2}_{P,R},其中u2表示统一LBP特征,即像素点的特征值的二进制最多有两次...\chi^2_w(S,M) = \sum_{i,j}\cfrac{(S_{i,j} - M_{i,j})^2}{S_{i,j} + M_{i,j}} $$ 根据以上距离公式结合近邻分类器可以完成是否是物品的分类...代码实践 OpenCV中自带LBP+级联分类器的人脸识别模型,同时也提供了训练的相应工具 使用默认模型测试 该代码与使用Harr+级联分类器完全相同,唯一需要改变的是调用的模型文件改为LBP特征模型lbpcascade_frontalface_improved.xml
现有的条件就是以上这么多,至于实际情况的不同会有不同的衍生,像基于用户的协同过滤算法和基于物品的协同过滤算法就是一些典型的实例。...3.基于用户的协同过滤算法vs基于物品的协同过滤算法 基于用户的协同过滤算法和基于物品的协同过滤算法两者区别在哪呢?...首先先解释下”协同过滤”: 所谓协同就是大家一起帮助啦,过滤就是把大家讨论的结果告诉你,不然原始信息量太大了。很明显啦,两者的区别在于一个是基于用户,一个是基于物品。...顾名思义,“基于用户”就是以用户为中心的算法,这种算法强调把和你有相似爱好的其他用户的物品推荐给你,而“基于物品”的算法则强调把和你喜欢物品的相似物品推荐给你。...总体来说,都是推荐物品给你,一个推荐的桥梁是用户,另一个是物品。 在运用的时候要根据实际情况的不同,选择是基于基于用户还是基于物品。
定义 UserCF:基于用户的协同过滤算法 ItemCF:基于物品的协同过滤算法 UserCF和ItemCF优缺点的对比 UserCF ItemCF 性能 适用于用户较少的场合,如果用户很多,计算用户相似度矩阵代价很大...适用于物品数明显小于用户数的场合,如果物品很多(网页),计算物品相似度矩阵代价很大 领域 时效性较强,用户个性化兴趣不太明显的领域 长尾物品丰富,用户个性化需求强烈的领域 实时性 用户有新行为,不一定造成推荐结果的立即变化...用户有新行为,一定会导致推荐结果的实时变化 冷启动 在新用户对很少的物品产生行为后,不能立即对他进行个性化推荐,因为用户相似度表是每隔一段时间离线计算的 新用户只要对一个物品产生行为,就可以给他推荐和该物品相关的其他物品...新物品上线后一段时间,一旦有用户对物品产生行为,就可以将新物品推荐给和对它产生行为的用户兴趣相似的其他用户 但没有办法在不离线更新物品相似度表的情况下将新物品推荐给用户 推荐理由 很难提供令用户信服的推荐解释...利用用户的历史行为给用户做推荐解释,可以令用户比较信服
前言 在之前的基于vision-ml模型训练框架改造以及实际场景应用识别弹窗,我们基于模型训练去处理我们的弹窗,但是呢,在一些界面弹窗是一样的,但是,文字是不一样的,那么我们呢怎么根据文字的不同去处理不同的弹窗呢...正文 我们的需求是处理文案不同但是弹窗类型相似,很多人都想到来ocr,那么对于ocr来说,有商业化的。但是也有开源的,那么我们基于免费的开源的去改造即可。...这里我们选取来美团开源的 https://github.com/Meituan-Dianping/vision-ui,其实它还是基于vision-ml训练出来的模型。...我们改造的地方呢,不是模型,我们是把它改造成本地的文本识别。其他的地方不用动。我们就不用了接口。把接口改成本地调用。...我们认为第一个识别的图片就是我们要点击的。
图像识别模型已经非常多了,但是看到对于DPN的下面表述,动起了将它复现一下的念头: DPNs helped us won the 1st place in Object Localization Task...由于ResNet把输入直接加到(element-wise adding)卷积的输出上,DenseNet则把每一层的输出都拼接(concatenate)到了其后每一层的输入上。...从ResNet、DenseNet到DPN的结构演进关系见图d和图e,图(b)DenseNet结构中绿色和红色的1x1卷积就是fk-1k(·)、fk-2k(·),两个1x1卷积是有独立的系数的,图(b)在...图(d)就是DenseNet和ResNet组合在一起的DPN,结构中最后一个1x1卷积的输出分成了两半,一半的特征数和ResNet分支的输入的特征数相同,这样才能和ResNet分支的输入正好相加。...2、论文实践 主要是对https://github.com/rwightman/pytorch-dpn-pretrained的代码进行复现,其中增加了输出结果与imagenet图像类别标签的映射。
领取专属 10元无门槛券
手把手带您无忧上云