1
摘要
同步定位与建图在移动机器人自主导航中起着重要的作用.大多数视觉SLAM方法使用关键点进行跟踪,但由于光线条件不确定和视点频繁变化,其性能受到任务中不稳定地标的影响.对于低纹理环境中的视觉SLAM...[2] [3].图形优化算法需要建立一个姿态图,通过边缘化的方法将环境中的地标观测转化为机器人不同姿态之间的约束,从而可以估计机器人的姿态序列和环境中地标的位置序列,简化优化过程.姿态图中的顶点对应机器人的姿态和每个时刻地标的位置...,利用EKF估计机器人的姿态和人工地标的位置[8].SPMSLAM的提出为SLAM的解决方案提供了方形平面标记,显示出更鲁棒、精确和快速....在SPM数据集上的实验结果表明,与ORB-SLAM2相比,该方法具有更高的准确率.然而这种方法本质上是基于关键点的.因此,可以在未来的工作中考虑对象级的SLAM,从而可以识别特定的对象,例如椅子或桌子,...并且通过将目标顶点添加到姿态图中来构造对象的成本函数.这种方法可以帮助进一步提高系统的定位精度,因为对象比关键点更稳定,并且不需要在环境中手动实现放置标记.