首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

从零开始学统计 03 | 均值,方差,标准差

二、方差、标准差 ? 方差和标准差,代表数据是如何在总体均值周围分布的,计算总体方差的公式: ? x-μ, 代表从每个数据 x 中减去总体均值 μ。...也就得到了总体标准差,很容易得到它的值: ? 好,现在我们就可以利用均值和标准差来绘制正态分布曲线了: 总体方差和标准差来决定曲线的宽度,反应数据如何分布在总体均值周围 ?...所以,我们几乎不计算总体均值,总体方差,总体标准差。 我们一般是用小样本来估计总体均值,方差,标准差。 但是,我们在做实验的时候,看到的只是一堆数据,比如这样: ?...值会在μ的左右来回摆动,随着数据量的增多,无限接近μ 根据数据计算估计总体方差和标准差: ? 现在有了这些参数就可以画曲线了: ?...同样的,我们有一个群体的所有数据,就可以直接计算总体方差和标准差。 当没有群体全部数据时,就不能用总体方差和标准差的公式了,这时候需要考虑用 n-1 去抵消样本平均值为总体均值说产生的差异。

2.5K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于FPGA的均值滤波(二)

    基于FPGA的均值滤波(二) 之一维求和模块 均值滤波按照整体设计可以分为以下几个子模块: (1)一维求和模块,这里记为sum_1D; (2)二维求和模块,这里记为sum_2D; (3)除法转换模块,此模块比较简单...整个顶层模块调用sum_2D模块和除法转换电路求取平均值,记为mean_2D。 用FPGA来求和是最简单的事情,所要注意的是求和结果不要溢出。...上面的电路确实可以实现预定的功能,然后本设计中采用另外一种方法:利用增量更新的方式来实现窗口横向求和,这种求和方式在大尺寸的窗口计算中十分有用。 在连续两个像素求和的过程中,仅仅有头尾的两个像素不同。...也就是针对每一个窗口并不需要重新计算所有窗口内的像素和,可以通过前一个中心点的像素和再通过加法将新增点和舍弃点之间的差值计算进去就可以获得新窗口内像素和。...具体到FPGA实现方面,同样需要把数据连续打几拍,同时计算首个数据与最后一个数据的差。当前求和结果为上一个求和结果与计算结果之差的和。同样对于窗口尺寸为5的行方向求和操作,设计带你撸如下图所示: ?

    1.4K110

    基于FPGA的灰度图像均值滤波算法的实现

    基于FPGA的灰度图像均值滤波算法的实现 作者:lee神 1....背景知识 均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标像素为中心的周围8个像素,构成一个滤波模板,即去掉目标像素本身),再用模板中的全体像素的平均值来代替原来像素值...线性滤波的基本原理是用均值代替原图像中的各个像素值,即对待处理的当前像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在该点上的灰度...像素点的均值等于其周围邻域的八个点的像素值之和除以8。...推荐阅读: 基于MATLAB图像处理的中值滤波、均值滤波以及高斯滤波的实现与对比

    96730

    Python跨文件计算Excel平均值、标准差并将结果保存为新表格

    本文介绍基于Python语言,对一个或多个表格文件中多列数据分别计算平均值与标准差,随后将多列数据对应的这2个数据结果导出为新的表格文件的方法。   首先,来看一下本文的需求。...我们现在需要分别对这2个表格文件执行如下操作:计算出其中部分变量(部分列)在所有样本(所有行)中的平均值与标准差数据,然后将这些数据结果导出到一个新的.csv格式文件中。   需求也很简单。...接下来,定义了一个column_need列表,其中包含了需要计算平均值和标准差的列名。   ...然后,使用pd.DataFrame创建了一个新的数据框data_new,其中包含了4列数据:mean_RGB列存储了data中计算得到的平均值,std_RGB列存储了data中计算得到的的标准差;mean_NIR...列存储了data_nir中计算得到的平均值,std_NIR列存储了data_nir中计算得到的标准差。

    12010

    正则引擎设计与实现——基于子集构造法

    这里我们先确定两种基本的词素: 匹配字符, 即需要用于匹配的字符, 如单个字符, \ 引导的转义字符 ,\u 引导的 Unicode code point 控制字符, 不匹配, 具有特殊语义的字符 ,...词法分析的编码实现 在编码实现上, 一个经验指导是, 使用策略模式独立出不同类型的词素的分词逻辑, 以对象组合的方式组装出词法分析器....语法分析的实现有两种选择——基于 parser generater 代码生成, 或手写递归下降, 基于 LR 的 Parser 分析能力会更强(如支持左递归文法), 而手写递归下降则更便于控制....正则引擎的语义分析, 目的是要得到 AST 对应的 NFA(Non-deterministic finite automata) , 以便在下一步交给子集构造法(Subset Construction...集 followSetVisitor.visit(node) //生成 NFA nfaGenerator.visit(node) } ) NFA to DFA 子集构造法

    32810

    java 判断 子集_java – 获取集合子集的策略

    参考链接: Java程序来检查一个集合是否是另一个集合的子集 我有一个场景,我的应用程序可以访问有限时间窗口的会话,在此期间它必须从数据库中获取数据到内存中,然后只使用内存中的数据来处理请求.  ...我的问题是,使用hibernate加载这些数据的最佳方法是:  > road.getCarCountMap()仅返回过去3个月中车辆计数的集合(可能为空)  >我最终得到一些需要很长时间才能处理的疯狂笛卡尔产品...,而它应该是10k道路*每月4次测量(每周)* 3个月= ~120k.这个查询在大约一个小时内完成,这很荒谬,因为方法#1(在我关注的情况下加载完全相同的数据)在3分钟内完成.  3.将地图定义为延迟并首先使用条件加载道路...,但检索到的汽车和卡车计数不会附加到roadList中的Road对象.所以当我尝试访问任何Road对象的计数时,我得到一个LazyInitializationException.  4.将地图定义为惰性...我还没有尝试过,因为它听起来很笨重,我不相信它会摆脱LazyInitializationException  >我遇到过这些方法遇到的问题是否有任何变通方法?  >是否有更好的方法?

    1.1K20

    统计满足条件的子集个数

    统计满足条件的子集个数 本篇文章解决了一个名为"统计满足条件的子集个数"的问题,并给出了相应的Java代码来解决这个问题。...现在的任务是统计满足上述条件的不同子集subset的个数,并对结果取模。 解决方法 为了解决这个问题,我们使用了回溯法来生成数组的所有子集,然后根据条件进行判断和统计。...总结 本文解决了一个名为"统计满足条件的子集个数"的问题,并通过回溯法的思路给出了相应的Java代码。我们通过生成数组的所有子集,并根据子集的元素和等条件进行判断和统计,得到满足条件的子集个数。...# 统计满足条件的子集个数 本篇文章解决了一个名为"统计满足条件的子集个数"的问题,并给出了相应的Java代码来解决这个问题。...总结 本文解决了一个名为"统计满足条件的子集个数"的问题,并通过回溯法的思路给出了相应的Java代码。我们通过生成数组的所有子集,并根据子集的元素和等条件进行判断和统计,得到满足条件的子集个数。

    4400

    基于sklearn的k均值类聚模型理论代码实现——手写数字识别

    理论 无监督学习 无监督学习是相对于有监督学习的概念,无监督学习的样本只有数据没有标签(label),由模型自主发现样本之间的关系。可用于数据的类聚(类聚算法)和降维(主成分分析)等。...轮廓系数 轮廓系数不需要先验知识,计算过程如下: 对于每一个样本,计算同类样本中其他样本到该样本的评价距离a 分别计算其他类样本中各类样本到这个样本的平均距离,找到平均距离最近的一个类到该样本的平均距离...计算轮廓系数$sc=\cfrac{b - a}{max(a,b)}$ 对所有样本重复该过程,取平均值为轮廓系数 k 均值类聚(k-mean) k均值类聚是一种简单的无监督学习模型,该模型是基于距离的类聚模型...,将把特征空间中距离相近的点进行类聚。...在训练k均值类聚模型中,有以下步骤: 随机在特征空间中指定k个质心 计算每个样本到质心的距离,归入最近的质心一类 对每个质心的样本分别求平均,得到新的k个质心 第二步与第三步不断迭代,直到某次类聚结果不变

    951100

    数据挖掘

    且3σ适用于有较多组数据的时候。在正态分布中σ代表标准差,μ代表均值。x=μ即为图像的对称轴.在(μ-3σ,μ+3σ)区间内的概率很大,超出这个范围的可能性不会超过0.3%。...归一化处理 最小-最大规范化 它是对原始数据的线性变换,将数值映射到0-1.公式为: x^*=\frac{x-min}{max-min} 0-均值规范化(标准差标准化) 经过处理的数据的均值为0,标准差为...1.公式为: x^*=\frac{x_i-x}{\sigma} 其中x为原始数据均值,σ为原始数据的标准差。...等宽法 等频法 基于聚类的分析方法:采用k-means方法,即随机确定k个初始点作为质心,然后将数据集集中的每个点分配到簇中。...属性规约的目的是寻找出最小的属性子集并确保新数据子集的概率分布尽可能的接近原来数据集的概率分布。

    1.6K50

    基于FPGA的均值滤波(三)

    基于FPGA的均值滤波(三) 之二维求和模块 在实现了窗口内一维行方向上的求和操作,现在要得到整个窗口内的像素之和,还必须将每一行的计算结果再叠加起来。...但是每一行的计算结果就不可以使用上面的增量更新的方法进行计算,这是由于纵向的数据流不是流水线式的。这时就只能采用普通的求和方式了。...同样,在进行列方向上的求和时,需要进行行缓存,并将一维行方向的求和结果打入行缓存,行缓存个数为窗口尺寸减1. 就窗口尺寸5x5而言,二维求和模块的带你撸设计如下: ?...输出数据有效信号 ); parameter DW = 14; parameter KSZ = 3; parameter IH = 512; parameter IW = 640; //首先例化一个行方向上的求和模块

    949100

    基于FPGA的均值滤波(一)

    均值滤波的数学表达式列出: 由上述公式列出求图像均值的步骤: (1)获取当前窗口所有像素。 (2)计算当前窗口所有像素之和。 (3)将(2)结果除以当前窗口数据总数。...滤波采用滑动窗口方法实现整幅图的遍历,因此,采用流水线结构来设计是最合适的。对于流水线结构来说,每个像素的运算方法是一致的,需要考虑的只是边界像素的处理问题。...以5x5的均值滤波窗口为例,如上图所示,首先看一下二维窗口求和模块。 一般情况下,先将二维的计算步骤化为一维的操作。假设现在完成第一行的求和操作,接下来需要“等”下一行的求和操作完成。...以及预期的是,还是需要把前几个数据单独缓存起来,一个指定位宽的寄存器即可满足要求。同步5个连续的输入数据如下图所示。...最后的问题是求取窗口的均值,需要将上述计算出来的和除以一个归一化系数,也就是整个窗口的像素数目。在FPGA里卖弄不直接进行除法操作,而是通过近似的乘加方法来实现。

    1.8K70

    基于玻璃基板的混合光子集成系统

    小豆芽这里介绍下德国Fraunhofer IZM在玻璃基板的相关工作,供大家参考。 Fraunhofer IZM研究组认为基于玻璃的光子集成系统是解决带宽增大、通道数变多的核心技术。...基于该低损耗的玻璃光波导,Fraunhofer IZM提出了两种混合封装集成的方案, 1)Thin glass layer 该方案采用一层较薄(百微米量级)的玻璃层,玻璃中含有用于光信号routing的波导...(图片来自文献1) 采用激光加工玻璃夹具,并配合一个含有SSC的玻璃芯片,可以实现亚微米级的对准精度,耦合损耗只有0.5dB, 如下图所示, (图片来自文献1) 基于该glass board方案,...(图片来自文献1) 该方案可以实现多颗芯片封装在一起的panel级系统,如下图所示, (图片来自文献1) 简单总结一下,Fraunhofer IZM正在推进两种基于玻璃基板的封装方案,glass...玻璃基板方案目前还处于比较初级的阶段,需要更多的工艺开发与积累,这可能是研究机构与公司的区别。如何发挥玻璃基板低光学损耗、低RF损耗的优势?

    1.9K11

    R语言计算大量栅格图像平均值、标准差

    本文介绍基于R语言中的raster包,批量读取多张栅格图像,对多个栅格图像计算平均值、标准差,并将所得新的栅格结果图像保存的方法。   ...在文章R语言raster包读取栅格遥感影像中,我们介绍了基于R语言raster包,对单张或多张栅格图像加以平均值、标准差计算的方法;但这一篇文章中的标准差计算方法仅仅可以对一张栅格图像的全部像元加以计算...本文就介绍另一种方法,可以对多个时相的大量栅格影像加以逐像元平均值、标准差的计算,从而使得最终的结果是一景表示各个像元在全部时相的图像中的平均值或标准差的图像。   ...接下来,我们通过calc()函数,对多时相栅格遥感影像数据加以计算;其中,其第一个参数tif_file_all就是需要加以计算的多个栅格图像,而第二个参数fun = sd表示我们需要计算标准差;如果我们需要计算平均值...当然,前述提到的文章R语言raster包读取栅格遥感影像中的方法也是可以对多个栅格图像计算平均值的。

    67820

    Python | Numpy:详解计算矩阵的均值和标准差

    一、前言 CRITIC权重法是一种比熵权法和标准离差法更好的客观赋权法: 它是基于评价指标的对比强度和指标之间的冲突性来综合衡量指标的客观权重。...在用 Python 复现 CRITIC 权重法时,需要计算变异系数,以标准差的形式来表现,如下所示: Sj表示第 j 个指标的标准差,在 CRITIC 权重法中使用标准差来表示各指标的内取值的差异波动情况...数据如下: 二、详解计算均值和标准差 初始化一个简单的矩阵: a = np.array([ [1, 2, 3], [4, 5, 6], [7, 8, 9] ]) a 分别计算整体的均值...、每一列的均值和每一行的均值: print("整体的均值:", np.mean(a)) # 整体的均值 print("每一列的均值:", np.mean(a, axis=0))...# 每一列的均值 print("每一行的均值:", np.mean(a, axis=1)) # 每一行的均值 分别计算整体的标准差、每一列的标准差和每一行的标准差: print("整体的方差

    4.3K30

    基于均值坐标(Mean-Value Coordinates)的图像融合算法的具体实现

    2009年, Zeev Farbman 在的SIGGRAPH上面提出的基于Mean-Value Coordinates方法的泊松融合加速算法《Coordinates for Instant Image...初步了解了一下原生的泊松融合算法和均值坐标融合算法,其原理包含的内涵十分丰富,包含一些诸如列散度、拉普拉斯算子、梯度场、泊松方程等等数学知识,要完全弄明白确实需要一定的基础。...均值坐标融合算法的输入参数也是一样的,不过mask图像很难以处理,OpenCV自带的GUI难以满足需求。...均值坐标(Mean-Value Coordinates) 在论文中提出了一个很重要的概念也就是均值坐标(Mean-Value Coordinates)。对于如下多边形内部的点: ?...那么可以求每个点的MVC(均值坐标),每个点有m个坐标值,一共有n个点,MVC就是就是一个n*m的矩阵。 求ROI区域边界的像素差diff,显然其是一个m*1的矩阵。

    1.4K20
    领券