链接: https://gair.leiphone.com/gair/2018yr 最近基于神经网络的自然语言理解的研究的迅速发展,尤其是关于学习文本语义表示的研究,使一些十分新奇的产品得到了实现,比如智能写作与可对话书籍...,我们提出了一个新的方法来学习用来计算语义文本相似度的句子表示方法。...否则,他们在语义上是不同的。 在这一工作中,我们的目标是通过一个回答分类任务来学习语义相似度: 给定一轮对话作为输入,我们希望从一批随机选择的回答中挑选出正确的回答。...采用这种方法,训练时间显著减少的同时仍保留了在各种迁移任务上的表现,包括情感与语义相似度分类。...通过 TensorFlow Hub 上的通用句子编码器的输出进行句对语义相似度比较。 正如我们在这篇论文中所表述的,一个版本的通用句子编码器模型使用了深度均值网络( DAN )编码器。
最近基于神经网络的自然语言理解的研究的迅速发展,尤其是关于学习文本语义表示的研究,使一些十分新奇的产品得到了实现,比如智能写作与可对话书籍。...,我们提出了一个新的方法来学习用来计算语义文本相似度的句子表示方法。...否则,他们在语义上是不同的。 在这一工作中,我们的目标是通过一个回答分类任务来学习语义相似度: 给定一轮对话作为输入,我们希望从一批随机选择的回答中挑选出正确的回答。...采用这种方法,训练时间显著减少的同时仍保留了在各种迁移任务上的表现,包括情感与语义相似度分类。...通过 TensorFlow Hub 上的通用句子编码器的输出进行句对语义相似度比较。 正如我们在这篇论文中所表述的,一个版本的通用句子编码器模型使用了深度均值网络( DAN )编码器。
今天小编给大家介绍的是一个基于语义相似性识别冗余来减少和可视化GO结果列表的R包rrvgo。...输入是一个富集的 GO terms向量,以及分数向量。如果未提供分数,则 rrvgo 将 GO terms(集合)大小作为分数。 第一步是得到terms之间的相似度矩阵。...函数calculateSimMatrix 获取要计算语义相似度的GO terms列表、OrgDb 对象、感兴趣的ontology和计算相似度分数的方法。...,可以根据相似度对terms进行分组。...相似度矩阵热图 将相似性矩阵绘制为热图,默认情况下启用行列聚类 heatmapPlot(simMatrix, reducedTerms, annotateParent
印章检测流程:利用深度神经网络,提取印章深度特征,同时学习印章之间的相似度,自己与自己相似,自己与其它不相似。1....Siamese网络Siamese网络是一种常用的深度学习相似性度量方法,它包含两个共享权重的CNN网络(说白了这两个网络其实就是一个网络,在代码中就构建一个网络就行了),将两个输入映射到同一特征空间,然后计算它们的距离或相似度一一使用共享的卷积层和全连接层...,输出特征向量表示,然后计算相似度。...Triplet Loss网络TripletLoss网络是一种通过比较三个样本之间的相似度来训练网络的方法。...本文方法本文利用李生网络,把真章、假章同时输入进行学习,真与真相似度为1;真与假相似度为0,设计损失函数(结合BCELoss和Contrastive Loss) 进行模型训练。
哈哈 内容不能为空!那就写几个字嘚瑟下。。。
最近在知乎上看到这样一个问题:基于对比学习(Contrastive Learning)的文本表示模型为什么能学到语义相似度?...为什么对比学习能学到很好的语义相似度?...因为对比学习的目标就是要从数据中学习到一个优质的语义表示空间 众所周知,直接用BERT句向量做无监督语义相似度计算效果会很差,这个问题还没搞清楚的可以看我的这篇回答:BERT模型可以使用无监督的方法做文本相似度任务吗...计算句子A和句子B的语义相似度,通常来说,基于交互的方案结果更准确: 如果一共有N个句子,那么就需要进行 N × (N-1) 次相似度计算。...总结来说,由于使用了不可学习的余弦相似度作为度量,并且完全去除了编码部分的交互耦合,基于表示的方案无法进行 task-specific 式的模型学习。
---- ©作者 | 崔文谦 单位 | 北京邮电大学 研究方向 | 医学自然语言处理 编辑 | PaperWeekly 本文旨在帮大家快速了解文本语义相似度领域的研究脉络和进展,其中包含了本人总结的文本语义相似度任务的处理步骤...文本相似度模型发展历程 从传统的无监督相似度方法,到孪生模型,交互式模型,BERT,以及基于BERT的一些改进工作,如下图: 总体来说,在 BERT 出现之前,文本相似度任务可以说是一个百花齐放的过程...作者认为,直接用 BERT 句向量来做相似度计算效果较差的原因并不是 BERT 句向量中不包含语义相似度信息,而是其中包含的相似度信息在余弦相似度等简单的指标下无法很好的体现出来。...Contrastive Learning of Sentence Embeddings, EMNLP 2021 https://arxiv.org/abs/2104.08821 SimCSE 是一篇基于对比学习的语义相似度模型...好了,以上就是文本语义相似度领域的研究脉络和进展,希望能对大家有所帮助。当然 2022 年也有不少优秀的工作出现,不过这一部分就留到以后吧!
Sematch是一个用于知识图谱的语义相似性的开发、评价和应用的集成框架,其代码见github。 Sematch支持对概念、词和实体的语义相似度的计算,并给出得分。...Sematch专注于基于特定知识的语义相似度量,它依赖于分类( 比如 ) 中的结构化知识。 深度、路径长度 ) 和统计信息内容( 语料库与语义图谱) 。...其应用框架如下所示:从图中可见,其支持多样化、多层次的相似度计算。 ? 如其DEMO上可见,支持多样化的相似度计算。 ? 1、测试:词的相似度计算,其结果如图所示:(代码见github) ?...2、概念的相似度计算 ? 附:由于dbpedia国内无法访问,所以一些实体的相似性等目前暂无法测试。
协同过滤 协同过滤简单来说是利用某兴趣相投、拥有共同经验之群体的喜好来推荐用户感兴趣的信息,个人通过合作的机制给予信息相当程度的回应(如评分)并记录下来以达到过滤的目的进而帮助别人筛选信息,回应不一定局限于特别感兴趣的...余弦相似度 余弦相似度用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小。余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似,这就叫"余弦相似性"。 ? ?...NaN 4.0 NaN 4.0 NaN 5.0 NaN C 2.0 NaN 2.0 NaN 1.0 NaN NaN D NaN 5.0 NaN 3.0 NaN 5.0 4.0 目标: 我们要寻找 A 最相似的其他顾客...fillna(0).values.reshape(1, -1)) sim_AB sim_AC OUT: array([[0.18353259]]) array([[0.88527041]]) 从上面看出A和C的比较相似...0).values.reshape(1, -1)) sim_AB sim_AC OUT: array([[0.30772873]]) array([[-0.24618298]]) 去中心化后 A和C的相似度是负的
当你给出一篇文章E时,采用相同的方法计算出E=(q1, q2, …, qn),然后计算D和E的相似度。 计算两篇文章间的相似度就通过两个向量的余弦夹角cos来描述。...文本D1和D2的相似性公式如下: ? 其中分子表示两个向量的点乘积,分母表示两个向量的模的积。 计算过后,就可以得到相似度了。我们也可以人工的选择两个相似度高的文档,计算其相似度,然后定义其阈值。...使用余弦这个公式,我们就可以得到,句子A与句子B的夹角的余弦。 余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似,这就叫”余弦相似性”。...所以,上面的句子A和句子B是很相似的,事实上它们的夹角大约为20.3度。...(为了避免文章长度的差异,可以使用相对词频); (3)生成两篇文章各自的词频向量; (4)计算两个向量的余弦相似度,值越大就表示越相似。
ALBERT是一个比BERT要轻量,效果更好的模型,本篇实践介绍如何用ALBERT计算两个文本的相似度。...,这里介绍如何基于albert_tiny模型进行文本相似度计算。...,在本篇实战中,利用这个向量来计算文本之间的相似度。...利用文本向量,计算两个文本之间距离或者相似度。...所以小Dream哥计划以聊天机器人作为切入点,通过介绍聊天机器人的原理和实践,逐步系统的更新到大部分NLP的知识,会包括语义匹配,文本分类,意图识别,语义匹配命名实体识别、对话管理以及分词等。
作者:刘才权 编辑:黄俊嘉 基于word2vec的词语相似度计算 应用场景 假设你有一个商品的数据库,比如: 现在通过用户的输入来检索商品的价格,最简单的方法就是通过字符串进行匹配,比如, 用户输入“椅子...”,就用“椅子”作为关键字进行搜索,很容易找到椅子的价格就是200元/个。...词语相似度计算 在上面的例子中,“凳子”跟“椅子”的语意更相近,跟“香蕉”或“冰箱”的语意相对较远。...在商品搜索的过程中,可以计算用户输入的关键字与数据库中商品名间的相似度,在商品数据库中找出相似度最大的商品,推荐给用户。这种相近的程度就是词语的相似度。...在实际的工程开发中可以通过word2vec实现词语相似度的计算。 代码实现 运行结果 调试技巧 在开发调试的过程中,会出现错误,需要重新运行程序。
word2vec word2vec是只有一个隐层的全连接神经网络,对语料中的所有词汇进行训练并生成相应的词向量(Word Embedding)WI 的大小是VxN, V是单词字典的大小, 每次输入是一个单词...词袋模型被广泛应用在文件分类,词出现的频率可以用来当作训练分类器的特征。关于”词袋”这个用字的由来可追溯到泽里格·哈里斯于1954年在Distributional Structure的文章。...连续词袋模型(CBOW) 移除前向反馈神经网络中非线性的hidden layer,直接将中间层的embedding layer与输出层的softmax layer连接; 忽略上下文环境的序列信息:输入的所有词向量均汇总到同一个...需要有一种约束,将文档1中的每个词,以不同的权重强制地分配到文档2的所有词上去。 WMD的优化 现在计算两个文档之间的 WMD 距离,如果用 k-NN来计算距离就非常耗时。...这两个 relax 过的优化问题的解,恰好对应于词向量矩阵的行空间和列空间上的最近邻问题,也是很好算的。最后定义 RWMD 为这两个 relaxed 优化问题的两个目标值中的最大值。
在计算机视觉领域,图像相似度比较和物种识别是两个重要的研究方向。...运行网页双击运行,刚刚创建的test.html文件,效果如图:上传左右图片,点击对比:可以看到两只品种明显不同的狗相似度为0。...再比较两只相同品种的狗的相似度:可以看到系统识别出了两只狗的种类相同,相似比也高达75.2%,但因为没有达到我们设置的80%的阈值,所以判断非同一个体。...同一物种的识别结果:五、实验总结本文介绍了基于OpenCV和深度学习的物种识别和个体相似度比较方法。...通过使用预训练的MobileNetV2模型进行特征提取和分类,并结合余弦相似度计算,实现了物种识别和相似度比较。此方法在计算机视觉领域具有广泛的应用前景,可以用于各种图像识别和比较任务。
最近,基于神经网络的自然语言理解研究的快速发展,特别是学习语义文本表征,为全新产品提供必要的技术,如Smart Compose和Talk to Books。...语义文本相似性 在“Learning Semantic Textual Similarity from Conversations”论文中,我们引入了一种学习语义文本相似度的句子表征新方法。...通过添加另一个预测任务(在这种情况下使用SNLI 蕴涵数据集),并迫使双方共享编码层,我们用相似的措施甚至得到更出色的表现,如STSBenchmark(一个句子相似度基准)和CQA任务B(问题/问题相似性任务...这种方式训练时间大大减少,同时保持包括情感和语义相似度分类在内的各种传输任务的性能。其目的是提供一种单一的编码器,可支持尽可能广泛的应用,包括释义检测,相关性,聚类和自定义文本分类。 ?...随着体系结构更复杂,该模型在各种情感和相似度分类任务上的表现都优于简单的DAN模型,而短句子的表现稍微慢一些。
基于Java深度学习库Deep Java Library的图片相似度计算 完整代码见 在本文中,我们将使用DJL中的预训练模型ResNet50来提取图片的特征向量,并计算图片之间的相似度。...相似度解释 余弦相似度 余弦相似度是通过计算两个向量夹角的余弦值来度量相似度。值越接近1,说明两个向量越相似,代表图片内容越接近: 接近1(如0.9及以上):图片内容非常相似。...[INFO ] - 与3_3.jpg的余弦相似度: 0.95913744 [INFO ] - 与4_1.jpg的余弦相似度: 0.95366186 [INFO ] - 与5_5.jpg的余弦相似度:...3.2 查找与0_0图片相似的图片并提高阈值 在某些情况下,为避免误判,我们可以通过设定更高的余弦相似度阈值来减少相似度较低的匹配结果。...余弦相似度、欧氏距离和内积在不同场景下能有效地评估图片之间的相似性,并能够根据不同阈值来提高匹配的准确性。 完整代码见
基于人工智能句子相似度判断文本错误的方法 人工智能分支自然语言处理的文本句子相似度度量方法以后很成熟,通过相似度在关键字不同距离的截取词组,形成多个维度的句子相似度打分,并进行超平面切割分类,考虑实际的文本大小...一、句子相似度 1、句子相似度:腾讯、百度、python 2、图书、CSDN 二、多维度超平面分类、软硬判断的数值视角、多维度 1、一些例子:多维度、超平面分类 2、我们的多维度思考:算力、计算速度、准确性...3、软硬判断的数值视角: 4、更多维度的头脑风暴:章节、类型、人。。。。...一、 1、句子相似度:腾讯、百度、python 二、 1、 2、 3、 4、 三、准确性、调参的黑盒和可视化。 1、每个月多少个文件?文件有多少句话?...2、相似度匹配单个还是混合精确度高?哪个精确的高? 3、哪些维度是强相关,算力、速度、精确的要求范围? 4、评价、数据打标签量影响学习准确率。 5、延伸到其他场景 6、
释放搜索潜力:基于ES(ElasticSearch)打造高效的语义搜索系统,让信息尽在掌握1.安装部署篇--简洁版,支持Linux/Windows部署安装 效果展示 PaddleNLP Pipelines...基于ES(ElasticSearch)打造高效的语义搜索系统效果展示链接 点击链接进行跳转: 释放搜索潜力:基于ES(ElasticSearch)打造高效的语义搜索系统,让信息尽在掌握[1.安装部署篇-...--完整版],支持Linux/Windows部署安装 释放搜索潜力:基于ES(ElasticSearch)打造高效的语义搜索系统,让信息尽在掌握[2.项目讲解篇],支持Linux/Windows部署安装...点击链接进行跳转: 释放搜索潜力:基于ES(ElasticSearch)打造高效的语义搜索系统,让信息尽在掌握[1.安装部署篇---完整版],支持Linux/Windows部署安装 释放搜索潜力:基于...ES(ElasticSearch)打造高效的语义搜索系统,让信息尽在掌握[2.项目讲解篇],支持Linux/Windows部署安装
本文来自于ECCV2018的论文《Adaptive Affinity Fields for Semantic Segmentation》,UC伯克利大学的研究人员提出了一种自适应相似场(Adaptive...图像语义分割不仅仅是对图像每个像素的简单分类问题,在一些语义信息不明的像素区域,直接对像素分类往往难以奏效,所以基于目标结构推理的方法就变得很重要。...以条件随机场方法后处理为例,对网络预测的图像像素标签进一步根据原始像素值调整,以消除明显的视觉上相似但标签不一致的问题,改进了语义分割的结果。...与在单个像素上强制学习语义类别并在相邻像素之间匹配类别的现有方法不同,提出的自适应相似场(Adaptive Affinity Fields, AAF)的概念来匹配标签空间中的相邻像素之间的语义关系。...我已经将其搬到百度云。
为了能够缓解告警对测试开发人员的打扰,提升工作效率,QAPM想到了了堆栈相似度检测算法来判断告警是否重复。...我们发现,判断告警是否重复的这个过程,及时就是判断卡顿堆栈相似度的过程,因此想到了利用卡顿堆栈相似度来发现重复的告警,从而给用户更好的体验。...Rebucket堆栈相似度计算算法 衡量堆栈之间的相似度这个需求很早就出现在各种缺陷平台上了,目的是为了对缺陷报告进行聚合。...Rebucket算法的基本假设在于,越靠近栈顶的栈帧越能反应该堆栈的特征,因此在计算相似度中的权重应该越大。我们要判断堆栈的相似度,其实就是判断序列的相似度,而在这个序列中,头部元素的权重更大。...这个判断依据在公式中表现为: image.png 另一方面,上文说到,越靠近栈顶的栈权重越大,这一部分反映在: image.png 因此在计算相似度的过程中,基于上述两个因素,提出了如下的算法,其中c
领取专属 10元无门槛券
手把手带您无忧上云