首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

pytorch张量的创建

张量的创建 张量(Tensors)类似于NumPy的ndarrays ,但张量可以在GPU上进行计算。从本质上来说,PyTorch是一个处理张量的库。一个张量是一个数字、向量、矩阵或任何n维数组。...layout=torch.strided, device=None, requires_grad=False) 功能:依size创建全0张量 size: 张量的形状 out: 输出的张量 layout...0张量 input: 创建与input同形状的全0张量 dtype: 数据类型 layout: 内存中布局形式 input = torch.empty(2, 3) torch.zeros_like...torch.full_like(input, dtype=None, layout=torch.strided, device=None, requires_grad=False) 功能: 依input形状创建指定数据的张量..., device=None, requires_grad=False) 功能:创建等差的1维张量 start: 数列起始值 end: 数列结束值 step: 数列公差,默认为1 torch.arange

11210

PyTorch入门笔记-创建已知分布的张量

创建已知分布的张量 正态分布(Normal Distribution)和均匀分布(Uniform Distribution)是最常见的分布之一,创建采样自这 2 个分布的张量非常有用,「比如在卷积神经网络中...[low, high) 均匀分布的 0D 张量、1D 张量和 2D 张量,创建 nD 张量与之类似,这里不再赘述。...*size 参数指定创建张量的形状。 torch.normal() 函数相对比较复杂,而 torch.randint() 函数和前面介绍的函数类似,只不过需要指定采样的区间范围。...>>> import torch >>> # 创建采样自均值0.标准差1.正态分布的2D张量 >>> # 等价torch.normal(mean = torch.full([2, 2], 0.) >>>...比如创建一个采样自 [2, 10) 范围均匀分布且形状为 [2, 2] 的 2D 张量。

3.5K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    PyTorch入门视频笔记-创建数值相同的张量

    创建全 0 或全 1 的张量 创建元素值为全 0 或全 1 的张量是非常常见的初始化手段,通过 torch.zeros() 和 torch.ones() 函数即可创建任意形状,且元素值全为 0 或全为...通过 torch.zeros(*size) 和 torch.ones(*size) 函数创建了元素值全为 0 和全为 1 的 0D 张量、1D 张量和 2D 张量,创建 nD 张量与之类似,这里不再赘述...*size 参数指定创建张量的形状,不同维度张量的形状可以参考下表。...比如: 创建 0D 张量只需要指定 size = []; 创建 1D 张量只需要指定 size = [dim0],其中 dim0 为第 0 个维度的元素个数; 创建 2D 张量只需要指定 size =...创建自定义数值张量 除了将张量的元素值初始化全为 0 或全为 1 的张量依然,有时候也需要全部初始化为某个自定义数值的张量。

    1.5K10

    基于numpy.einsum的张量网络计算

    张量与张量网络 张量(Tensor)可以理解为广义的矩阵,其主要特点在于将数字化的矩阵用图形化的方式来表示,这就使得我们可以将一个大型的矩阵运算抽象化成一个具有良好性质的张量图。...上面这个图从左到右分别表示:一阶张量、二阶张量以及三阶张量,我们可以看出,一个张量的阶数在图像化的表示中被抽象称为了张量的腿的数量,而中间的方形或者圆形则表示张量本身。...如果从矩阵运算的角度来理解,实际上就是一个 2\times2 的矩阵乘以一个 2\times1 的矢量,并且得到了一个新的 2\times1 的矢量。...而这个将张量网络的所有张量进行计算,最终得到一个或一系列的新的张量的矩阵乘加过程,我们也称之为张量缩并,英文叫Tensor Contraction,注:上图转载自参考链接1。...由于上面所提到的两个例子,其实都只涉及到两个张量之间的预算,当多个张量一同进行运算时,就会引入一个新的参量:缩并顺序,在张量网络的实际应用场景中,缩并顺序会极大程度上的影响张量网络计算的速度。

    1.8K60

    ICCV 2021 | UCLA提出:基于张量CUR的快速鲁棒张量主成分分析算法

    与传统的高维奇异值分解算法(HOSVD)不同,我们的算法是基于【张量CUR分解】和【交替映射法】衍生出的关于张量分解的一套算法。...张量(Tensor)是比矩阵更广义的结构,可以看作多维度版本的矩阵;同样,矩阵可以定义为二维的张量。在各种关于数据科学的研究中,张量被认为可以比矩阵更好地保存原数据的结构,从而产生了各类对张量的研究。...其中,张量的鲁棒主成分分析,即鲁棒分解问题,就是我们算法处理的主要问题。即: 注意,张量的秩存在多种不同的定义。...将这个概念拓展到高维张量里,我们就有了张量版本的CUR分解(张量CUR有Chidori CUR和 Fiber CUR两个版本,本文使用Fiber CUR。...在这之上,RTCUR算法对于真实数据同样有明显的时间优势(见Table 1)。 5 总结 本文针对张量鲁棒主成分分析问题提出了一个基于张量CUR的快速算法。

    75430

    张量的结构操作

    张量结构操作诸如:张量创建,索引切片,维度变换,合并分割。 张量数学运算主要有:标量运算,向量运算,矩阵运算。另外我们会介绍张量运算的广播机制。...动态计算图我们将主要介绍动态计算图的特性,计算图中的Function,计算图与反向传播。 本篇我们介绍张量的结构操作。 一,创建张量 张量创建的许多方法和numpy中创建array的方法很像。...此外,对于不规则的切片提取,可以使用torch.index_select, torch.masked_select, torch.take 如果要通过修改张量的某些元素得到新的张量,可以使用torch.where...(布尔索引) #结果是1维张量 g = torch.masked_select(scores,scores>=80) print(g) 以上这些方法仅能提取张量的部分元素值,但不能更改张量的部分元素值得到新的张量...如果要通过修改张量的部分元素值得到新的张量,可以使用torch.where,torch.index_fill 和 torch.masked_fill torch.where可以理解为if的张量版本。

    2K20

    PyTorch使用------张量的创建和数值计算

    1.2 张量的基本创建 torch.tensor 根据指定数据创建张量 torch.Tensor 根据形状创建张量, 其也可用来创建指定数据的张量 torch.IntTensor、torch.FloatTensor...) # 表示创建的是 int32 张量 # torch.FloatTensor(2, 3) # 表示创建的是 float32 张量 ​ ​ # 注意: 如果创建指定类型的张量,但是传递的数据不匹配...type 函数进行转换 def test01(): ​ data = torch.full([2, 3], 10) print(data.dtype) ​ # 注意: 返回一个新的类型转换过的张量...0, 10, [2, 3]) print(data) ​ # 计算完成之后,会返回一个新的张量 data = data.add(10) print(data) ​...# 带下划线的版本的函数直接修改原数据,不需要用新的变量保存 data.add_(10) print(data) ​ # data.sub_() # 减法 # data.mul

    9310

    张量的数学运算

    前面几章我们对低阶API已经有了一个整体的认识,本章我们将重点详细介绍张量操作和动态计算图。 张量的操作主要包括张量的结构操作和张量的数学运算。...张量结构操作诸如:张量创建,索引切片,维度变换,合并分割。 张量数学运算主要有:标量运算,向量运算,矩阵运算。另外我们会介绍张量运算的广播机制。...numpy是一样的: 1、如果张量的维度不同,将维度较小的张量进行扩展,直到两个张量的维度都一样。...2、如果两个张量在某个维度上的长度是相同的,或者其中一个张量在该维度上的长度为1,那么我们就说这两个张量在该维度上是相容的。 3、如果两个张量在所有维度上都是相容的,它们就能使用广播。...4、广播之后,每个维度的长度将取两个张量在该维度长度的较大值。 5、在任何一个维度上,如果一个张量的长度为1,另一个张量长度大于1,那么在该维度上,就好像是对第一个张量进行了复制。

    2.8K20

    PyTorch中张量的创建方法的选择 | Pytorch系列(五)

    ,并为我们的张量创建需求提出一个最佳的选择。...你可以将torch.tensor()函数看作是在给定一些参数输入的情况下构建张量的工厂。工厂函数是用于创建对象的软件设计模式。 如果您想了解更多关于它的信息,请点击这里。...这是torch.Tensor() 构造函数缺少配置选项的示例。这也是使用 torch.tensor() 工厂函数创建张量的原因之一。 让我们看一下这些替代创建方法之间的最后隐藏的区别。...对于索引0,前两个o1和o2仍具有原始值1,而对于索引0,后两个 o3 和 o4 具有新值0。...总结: 至此,我们现在应该对PyTorch张量创建选项有了更好的了解。我们已经了解了工厂函数,并且了解了内存共享与复制如何影响性能和程序行为。

    2K41

    多维张量的几何理解

    一维张量没有行和列的概念,只有长度的概念。上述的const1就是长度为4的一维张量,或者称为向量。 上面的图仅为示意,代表一维张量只有axis=0这个方向,并不是指这是一个4行的向量。...事实上,tensorflow在做一些运算时,反而经常把1行N列的二维张量简化成一个长度为N的一维向量。...上面的例子就是4维张量。 以三维以上的张量为例: 从左边开始数连续的[,最后一个[对应的]中一共两个元素,分别为1, 2,说明深度为2。...shape=(3, 4, 2)时,表示3行4列深度为2的张量 shape=(2, 3, 4, 2)时,表示有2个 3行4列深度为2的张量 shape=(6, 2, 3, 4, 2)时,表示有6个四维张量...,这个四维张量又可以表示为2个 3行4列深度为2的张量。

    2K30

    什么是张量计算?常见的张量计算引擎介绍

    高阶张量: 三维及以上维度的数组,如三维张量可以想象为一个立方体,每个元素都有三个索引。 张量运算包括但不限于以下几种: - 加法运算:两个同阶张量的对应元素相加。...- 乘法运算: - 点乘(逐元素乘法):同阶张量的对应元素相乘。 - 外乘(张量积):生成的张量的阶是参与运算的两个张量阶数之和。...- 缩并运算(Contracting):选择张量中的两个或多个维度进行求和操作,减少张量的阶数。 - 内积运算:通过选取张量中的某些维度进行配对相乘并求和,得到更低阶的张量。...- 转置与切片:改变张量的维度顺序或提取张量的部分数据。 应用场景: - 深度学习:神经网络中的权重、激活函数输出、输入数据等通常表示为张量,张量计算是实现前向传播、反向传播及优化过程的基础。...张量计算引擎是用于处理多维数组(即张量)操作的软件库,它们在深度学习、机器学习、科学计算和数据分析等领域至关重要。以下是几个常见的张量计算引擎: 1.

    56010

    PyTorch: 张量的拼接、切分、索引

    1.2 torch.stack 功能:在新创建的维度 dim 上进行拼接(会拓宽原有的张量维度) tensors:张量序列 dim:要拼接的维度 t = torch.ones((2, 3))...torch.stack([t, t, t], dim=2) print("\nt_stack:{} shape:{}".format(t_stack, t_stack.shape)) 可见,它在新的维度上进行了拼接...进行切分 返回值:张量列表 tensor : 要切分的张量 split_size_or_sections 为 int 时,表示 每一份的长度;为 list 时,按 list 元素切分 dim 要切分的维度...:在维度dim 上,按 index 索引数据 返回值:依index 索引数据拼接的张量 input : 要索引的张量 dim 要索引的维度 index 要索引数据的序号 code: t = torch.randint...True 进行索引 返回值:一维张量(无法确定true的个数,因此也就无法显示原来的形状,因此这里返回一维张量) input : 要索引的张量 mask 与 input 同形状的布尔类型张量 t

    1.3K30
    领券