首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Nature子刊:基于静息态EEG功能连接模式识别精神疾病亚型

摘要:精神疾病在神经生物学和临床表征上存在异质性,基于数据驱动的疾病亚型识别有助于精神疾病的诊断和治疗,本文报告了创伤后应激障碍(PTSD)和重度抑郁障碍(MDD)两种临床相关亚型的识别,这两种疾病亚型主要通过在额顶叶控制网络(FPCN)和默认模式网络内(DMN)中稳定、有区分度的功能连接模式来建立。本文分析了四组PTSD和MDD患者数据集,在高密度静息态脑电图中重建信号,探究重建信号的能量包络连接性特征(PEC),通过有监督和无监督的机器学习确定疾病亚型,并表明这些疾病亚型在不同条件下记录的独立数据集之间是可转移的。与健康对照组相比,功能连接差异较大的疾病亚型对PTSD的心理治疗反应较差,对MDD的抗抑郁药物没有反应。在MDD数据集中,PTSD和MDD两种临床相关亚型对接受心理治疗同时接受重复经颅磁刺激(rTMS)治疗反应相似。本文通过稀疏聚类的数据驱动方法可能为基于连接组的诊断提供一个有效的解决方案。 一、背景介绍 精神病的诊断是根据一系列症状来定义的。例如,创伤后应激障碍(PTSD)涉及一系列情绪、认知和躯体症状,这些症状可能在一个人经历或目睹了一个对个人造成严重伤害或威胁的创伤事件后出现。同样,重度抑郁症(MDD)以持续的负面情绪为特征,通常与生理、心理或社会压力来源有关。研究精神疾病神经生物学的传统方法遵循了这一诊断框架,通过病例对照研究,将所有精神疾病患者与健康个体进行比较。然而,研究病例-对照组的差异可能会阻碍精神病学生物标志物的发现和对精神病理生物学的理解,在当前的临床诊断定义中,患者和健康对照患者中存在高度的生物学异质性,而这种生物异质性对治疗结果有重大影响,如何识别和复制能够阐明这种异质性的生物标志物是一个长期的挑战。本文试从高密度静息态脑电图(rsEEG)中重建源信号,并从重建的信号中提取功能包络连接特征(PEC),从PEC特征中寻找生物标志物。 研究主要目标:描述PTSD和MDD的神经生物学异质性,通过稀疏聚类的数据驱动方法,从静息态脑电图的功能包络连接(rsEEG-PEC)中识别出生物标志物,从而阐明精神病学在神经生物学和临床表征上的异质性。 研究方法概览 在四个独立的数据集中进行亚型分析,数据集包括两个PTSD数据集和两个MDD数据集。从一个PTSD数据集的rs-EEG中重建信号,从信号中提取PEC特征,根据PEC特征确定两种稳定且可复制的临床相关亚型。然后在其他数据集上对发现的亚型进行复制分析,探究数据集疾病亚型的可转移性,最后探究发现的疾病亚型在不同的临床干预下的反应,分析亚型的临床意义。 二、研究设计 数据集1:106名创伤后应激障碍患者和95名健康对照者(曾受创伤的健康参与者)的创伤后应激障碍数据集;研究人员使用BrainAmp直流放大器(Brain Products)以5 kHz采样率采集PTSD患者的脑电图数据,模拟带通滤波在0 - 1 kHz之间。按照标准的10-20系统,使用带有64个Ag/AgCl电极的Easy EEG帽进行数据记录。参考电极被固定在鼻尖上。在实验过程中,参与者被安排坐在一张舒适的椅子上,并被要求保持清醒,完成两个阶段(闭上眼睛三分钟和睁开眼睛三分钟),之后进行脑电信号的预处理。 数据集2:创伤后应激障碍135例患者,这些参与者是在北加州或新墨西哥州的退伍军人事务诊所的心理治疗评估中,基于符合创伤后应激障碍的临床标准而招募的。采用 (EGI)放大器,以1 kHz采样率和256个电极采集创伤后应激障碍患者的脑电图数据,在数据记录期间电极阻抗保持在50 KΩ以下。在实验中,参与者坐在一张舒适的椅子上,并被要求保持清醒,完成两个阶段(10分钟闭眼和10分钟睁开眼)。静息状态的脑电图预处理。记录的rsEEG数据使用与PTSD研究数据集1中相同的方式处理。 数据集3:重度抑郁症266例患者,在四个研究地点:德克萨斯大学西南医学中心(TX)、麻省总医院(MG)、哥伦比亚大学(CU)和密歇根大学(UM),根据机构审查委员会批准的方案,每个参与者都获得了书面知情同意。rsEEG记录了四个研究地点。在所有研究地点,都进行了放大器校准。实验人员通过视频会议演示了准确的脑电图帽放置和任务指令传递,试验受试者脑电图数据获得了哥伦比亚脑电图团队的认证。rsEEG被记录在4个2分钟的区块中(两个闭着眼睛的区块和两个睁开眼睛的区块)。参与者被要求保持静止,尽量减少眨眼或眼球运动,并在眼睛睁开的情况下注视中心呈现的十字。记录的rsEEG数据使用与PTSD研究数据集1中相同处理。结果,在266例治疗前脑电图记录的患者中,228例有可用的脑电图数据可供分析。38例无法使用脑电图记录的患者主要表现为不良脑电图通道过多、通道总功率过大。 数据集4:重度抑郁症179例患者,179名患者来自荷兰的三家门诊精神保健诊所。根据10-20电极国际系统,所有通道的采样率为500赫兹。受试者被要求睁开眼睛,闭上眼

00
您找到你想要的搜索结果了吗?
是的
没有找到

【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类

我们一般用深度学习做图片分类的入门教材都是MNIST或者CIFAR-10,因为数据都是别人准备好的,有的甚至是一个函数就把所有数据都load进来了,所以跑起来都很简单,但是跑完了,好像自己还没掌握图片分类的完整流程,因为他们没有经历数据处理的阶段,所以谈不上走过一遍深度学习的分类实现过程。今天我想给大家分享两个比较贴近实际的分类项目,从数据分析和处理说起,以Keras为工具,彻底掌握图像分类任务。 这两个分类项目就是:交通标志分类和票据分类。交通标志分类在无人驾驶或者与交通相关项目都有应用,而票据分类任务

05

BMC Bioinfo. | 免疫组化图像中蛋白质亚细胞定位的自动分类以揭示结肠癌中生物标志物

今天要介绍的是南方医科大学徐莹莹课题组在BMC Bioinformatics发表的文章”Automated classification of protein subcellular localization in immunohistochemistry images to reveal biomarkers in colon cancer”。作者在这篇文章中提出了将特征工程和深度卷积神经网络相结合的方式构建了蛋白质亚细胞定位的自动分类器,以此来识别蛋白质亚细胞位置变化。相较于统计机器学习模型的好坏取决于预定义特征的好坏,作者创新性地整幅IHC图像划分小图像块处理,引入了深层特征并级联预定义特征,以此来训练支持向量机(SVM)模型。训练的模型可以基于蛋白质亚细胞易位有效检测生物标志物,并在识别蛋白质位置表现更为出色。该研究在注释未知的蛋白质亚细胞位置并发现新的潜在位置生物标志物有着重要科学意义。

03

Stanford | 基于蛋白-配体复合物的几何深度学习指导基于片段的配体生成

本文介绍一篇来自于斯坦福大学计算机科学系Ron O. Dror教授组的分子生成工作——《Fragment-Based Ligand Generation Guided By Geometric Deep Learning On Protein-Ligand Structure》。计算辅助新型分子设计有可能加速药物发现。然而,在药物发展中分子优化是一项耗时的工作,通常需要花费数年对分子的多种性质同时进行优化。将一个能和蛋白质口袋结合的小的、片段状初始分子扩展成更大的分子,使之与已知药物的物理化学性质相匹配,这是生物信息学中一个特定的分子优化问题。针对这一问题,作者使用数据有效的E(3)等变网络和3D原子点云表征进行建模,这种方法能结合蛋白质口袋的3D空间信息同时生成合理的分子,从而加速药物发现过程。通过对多种性质进行评估证明该框架确实能生成可行的分子。

03

静息态下大脑的动态模块化指纹

摘要:人脑是一个动态的模块化网络,可以分解为一系列模块,其活动随时间不断变化。静息状态下,在亚秒级的时间尺度上会出现几个脑网络,即静息态网络(RSNs),并进行交互通信。本文尝试探究自发脑模块化的快速重塑及其与RSNs的关系。三个独立的健康受试者静息态数据集(N=568),对其使用脑电/脑磁图(EEG/MEG)来探究模块化脑网络的动态活动。本文证实了RSNs的存在,且其中一些网络存在分裂现象,尤其是默认模式网络、视觉、颞区和背侧注意力网络。本文也证明了心理意象中的个体间差异与特定模块的时间特征有关,尤其是视觉网络。综上所述,本文的研究结果表明大规模电生理网络在静息态时具有依赖模块化的动态指纹。

03

ACL2016最佳论文:CNN/日常邮件阅读理解任务的彻底检查

摘要 NLP尚未解决的核心目标是,确保电脑理解文件回答理解问题。而通过机器学习系统,解决该问题的一大阻碍是:人类-注释数据的可用性有限。Hermann等人通过生成一个超过百万的实例(将CNN和日常邮件消息与他们自己总结的重点进行配对)来寻求解决方案,结果显示神经网络可以通过训练,提高在该任务方面的性能。本文中,我们对这项新的阅读理解任务进行了彻底的检测。我们的主要目标是,了解在该任务中,需要什么深度的语言理解。一方面,我们仔细的手动分析问题小的子集,另一方面进行简单的展示,在两个数据集中,细心的设计系统,就

04

干货|如何做准确率达98%的交通标志识别系统?

摘要: 我们可以创建一个能够对交通标志进行分类的模型,并且让模型自己学习识别这些交通标志中最关键的特征。在这篇文章中,我将演示如何创建一个深度学习架构,这个架构在交通标志测试集上的识别准确率达到了98%。 交通标志是道路基础设施的重要组成部分,它们为道路使用者提供了一些关键信息,并要求驾驶员及时调整驾驶行为,以确保遵守道路安全规定。如果没有交通标志,可能会发生更多的事故,因为司机无法获知最高安全速度是多少,不了解道路状况,比如急转弯、学校路口等等。现在,每年大约有130万人死在道路上。如果没有这些道路标志

07

手把手 | 数据科学速成课:给Python新手的实操指南

大数据文摘作品 编译:王梦泽、丁慧、笪洁琼、Aileen 数据科学团队在持续稳定的发展壮大,这也意味着经常会有新的数据科学家和实习生加入团队。我们聘用的每个数据科学家都具有不同的技能,但他们都具备较强的分析背景和在真正的业务案例中运用此背景的能力。例如,团队中大多数人都曾研究计量经济学,这为概率论及统计学提供了坚实的基础。 典型的数据科学家需要处理大量的数据,因此良好的编程技能是必不可少的。然而,我们的新数据科学家的背景往往是各不相同的。编程环境五花八门,因此新的数据科学家的编程语言背景涵盖了R, MatL

05

BRAIN:用于阿尔茨海默病分类的可解释深度学习框架的开发和验证

阿尔茨海默症是全世界痴呆症的主要病因,随着人口老龄化,患病负担不断增加,在未来可能会超出社会的诊断和管理能力。目前的诊断方法结合患者病史、神经心理学检测和MRI来识别可能的病例,然而有效的做法仍然应用不一,缺乏敏感性和特异性。在这里,本文报告了一种可解释的深度学习策略,该策略从MRI、年龄、性别和简易智力状况检查量表(mini-mental state examination ,MMSE) 得分等多模式输入中描绘出独特的阿尔茨海默病特征(signatures)。该框架连接了一个完全卷积网络,该网络从局部大脑结构到多层感知器构建了疾病概率的高分辨率图,并对个体阿尔茨海默病风险进行了精确、直观的可视化,以达到准确诊断的目的。该模型使用临床诊断的阿尔茨海默病患者和认知正常的受试者进行训练,这些受试者来自阿尔茨海默病神经影像学倡议(ADNI)数据集(n = 417),并在三个独立的数据集上进行验证:澳大利亚老龄化影像、生物标志物和生活方式研究(AIBL)(n = 382)、弗雷明汉心脏研究(FHS)(n = 102)和国家阿尔茨海默病协调中心(NACC)(n = 582)。使用多模态输入的模型的性能在各数据集中是一致的,ADNI研究、AIBL、FHS研究和NACC数据集的平均曲线下面积值分别为0.996、0.974、0.876和0.954。此外,本文的方法超过了多机构执业神经科医生团队(n = 11)的诊断性能,通过密切跟踪死后组织病理学的损伤脑组织验证了模型和医生团队的预测结果。该框架提供了一种可适应临床的策略,用于使用常规可用的成像技术(如MRI)来生成用于阿尔茨海默病诊断的细微神经成像特征;以及将深度学习与人类疾病的病理生理过程联系起来的通用方法。本研究发表在BRAIN杂志。

01

深度学习应用篇-计算机视觉-语义分割综述[5]:FCN、SegNet、Deeplab等分割算法、常用二维三维半立体数据集汇总、前景展望等

目前,计算机视觉是深度学习领域最热门的研究领域之一。从广义上来说,计算机视觉就是要“赋予机器自然视觉的能力”。实际上,计算机视觉本质上就是研究视觉感知问题,其目标就是对环境的表达和理解,核心问题是研究如何对输入的图像信息进行组织,对物体和场景进行识别,进而对图像内容给予解释。更进一步来说,计算机视觉就是研究如何让计算机利用摄像头等机器设备实现和人类一样“看”的能力,对目标进行分割、分类、识别、跟踪、判别决策。计算机视觉是一个跨领域的交叉学科,包括计算机科学(图形、算法、理论、系统、体系结构),数学(信息检索、机器学习),工程学(机器人、语音、自然语言处理、图像处理),物理学(光学 ),生物学(神经科学)和心理学(认知科学)等等。许多科学家认为,计算机视觉为人工智能的发展开拓了道路。

03
领券