在基于深度学习的CT图像重建问题中,已经有若干个工作被刊载。 下面将主要介绍两个我们课题组关于深度重建的论文。...蓝色箭头标记的是一些血管的细节,RED-CNN获得的图像很好地将这些细节修复了,而其他方法重建得到的图像在该处的细节都被或多多或少有所丢失。...前4种方法为迭代重建方法,FBPConvNet为基于后处理的深度学习方法。 图5显示了一组腹腔数据重建结果的局部放大,其中 (a) 是正常剂量的CT图像。...从结果可以看出,基于深度学习的CT图像重建方法在图像质量上要优于传统的重建算法。因此,在未来,深度学习和医学图像重建的联系将会越来越紧密。...在今后的工作中,我们也会致力于推进深度学习和CT图像领域的结合,引入深度学习发展的最新技术,将基于深度学习的方法引入临床应用上,并且尝试解决其他的医学图像问题,加快医学图像领域的发展进程。
图像尺寸变大且变清晰是图像处理的内在需求之一,然而现有的图像分辨率固定的情况下,从低分辨率到高分辨率的扩展常伴来了模糊、噪声的问题,即Single image super-resolution (SISR...因此深度学习架构下的图像超分辨率重建是近几年来研究的热点。 ...2016年VDSR文章(之前编译过)有了比较大的突破,经过复现,发现效果还不错,特记录下: 1、论文基本原理 超分辨率重建的基本原理,如下所示:即要找到高分辨率的图像x ...论文的基本网络架构如下所示: 从图上可以看出,其输入不仅仅是低分辨率的原始图像,而且是一系列的多重降级的低分辨率图像系列,然后采用与VDSR类似的网络架构,不过需要在最后将得到的一系列高分辨率结果再合并为一张单张的图像...程序测试结果如下:可以看到SISR的效果还是不错的。
结果表明,利用该渲染器可以在质量和数量上对三维无监督单视图重建进行显著的改进。 简介 从二维图像中理解和重建三维场景和结构是计算机视觉的基本目标之一。...基于单图像的三维无监督网格重建 由于SoftRas仅仅基于渲染损失向网格生成器提供强错误信号,因此可以从单个图像中实现网格重建,而无需任何3D监督。 ?...2.基于图像的三维推理:二维图像被广泛地用作三维属性推理的媒介,特别是基于图像的重建技术受到了广泛的关注。...基于图像的三维推理 1.单视图网格重建:从图像像素到形状和颜色生成器的直接梯度使作者能够实现三维无监督网格重建,下图展示了本文的框架: ?...2.基于图像的形状拟合:基于图像的形状拟合在姿态估计、形状对齐、基于模型的重建等方面有着重要的作用,传统的方法必须依赖于粗糙的对应关系,例如2D关节或特征点,以获得用于优化的监控信号。
因此,基于图像学习的三维重建任务属于计算机视觉、计算机图形学和人工智能的交叉领域。...基于图像的三维重建在学术研究和工业生产中都具有举足轻重的地位,有着长久的研究历史。...作为计算机图形学与视觉结合的重要课题,基于少量图像样本的三维重建问题旨在根据给定的少量单视角或多视角图像,估计其对应的三维信息。...传统的基于图像的三维重建方法一般是基于多视角几何的方法,利用标定的相机与视差较小的双目图像,从几何角度用三角原理求解图像像素对应的三维坐标,或者利用一系列连续图像帧,联合估计相机的姿态变化与匹配特征点,...本文将探讨并介绍基于少量图像的三维重建算法,训练数据从经典的“大数据”到少量标注数据,学习任务从二维图像空间的识别与理解到三维空间的重建。
大家好,又见面了,我是你们的朋友全栈君。...【实例简介】 多图像超分辨率的实现主要就是将具有相似而又不同却又互相补充信息的配准影像融到一起,得到非均匀采样的较高分辨率数据,复原需要亚像素精度的运动矢量场,然而它们之间的运动模型估计精确与否直接影响到重建的效果...,因此影像配准和运动模型的估计精度是高分辨率图像重建的关键。...由于实际中不同时刻获得的影像数据间存在较大的变形、缩放、旋转和平移,因此必须对其进行配准,在此基础上进行运动模型估计。...然后通过频率域或空间域的重建处理,生成均匀采样的超分辨率数据 【实例截图】 【核心代码】 superresolution_v_2.0 └── superresolution_v_2.0 ├── __MACOSX
,可以分为基于插值的重建、基于重构的重建和基于学习的超分辨率重建。...(1) 基于插值的超分辨率重建 基于插值的方法将每一张图像都看做是图像平面上的一个点,那么对超分辨率图像的估计可以看做是利用已知的像素信息为平面上未知的像素信息进行拟合的过程,这通常由一个预定义的变换函数或者插值核来完成...(2) 基于重构的超分辨率重建 基于重构的方法则是从图像的降质退化模型出发,假定高分辨率图像是经过了适当的运动变换、模糊及噪声才得到低分辨率图像。...(3) 基于学习的超分辨率重建 基于学习的方法则是利用大量的训练数据,从中学习低分辨率图像和高分辨率图像之间某种对应关系,然后根据学习到的映射关系来预测低分辨率图像所对应的高分辨率图像,从而实现图像的超分辨率重建过程...(3)尽管当前基于深度学习的重建技术使得重建图像在主观评价指标上取得了优异的成绩,但重建后的图像通常过于平滑,丢失了高频细节信息。
匹配追踪的过程已经在匹配追踪算法(MP)简介中进行了简单介绍,下面是使用Python进行图像重建的实践。...break for t, s in zip(indices, coefficients): result[t][i] = s return result 基于...MP的图像重建 对于较大的图像,进行分块处理,使用im2col和col2im函数进行图像的分块和分块后的重建(参考:Python中如何实现im2col和col2im函数)。...这样字典矩阵的行数就仅仅和分块矩阵的大小有关,和原始图像的大小没有关系了。我们可以使用规模较小的字典矩阵表征较大的图像。...的重建结果 [j01cnti44g.png] 稀疏系数设置为30的重建结果 可以看到随着稀疏值的增大,重建的的结果会越来越好,但是稀疏度降低。
基于SRGAN的图像超分辨率重建 本文偏新手项,因此只是作为定性学习使用,因此不涉及最后的定量评估环节 ---- 目录 基于SRGAN的图像超分辨率重建 1 简要介绍 2 代码实现 2.1 开发环境 2.2...Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network》 SRGAN使用了生成对抗的方式来进行图像的超分辨率重建...import torch from torch.utils.data import Dataset import numpy as np import os from PIL import Image #图像处理操作...tempImg = self.imgs[index] tempImg = Image.open(tempImg) sourceImg = self.transforms(tempImg) #对原始图像进行处理...SRGAN中使用了基于VGG提取的高级特征作为损失函数,因此需要使用到VGG预训练模型。
此项目有两个主要特点:单图像3D物体预测和3D纹理图像生成,这些都是基于2D监督进行训练的。 简介 在理解真实世界时,3D视觉感知提供了无价的信息。但是人类和机器接受到的原始信息都是2D投影(图像)。...现在很多已经存在的工作都集中于基于光栅化的渲染上,它们以集合方式将3D物体投影到图像平面上,并且不能支持更高级的照明效果,已被证明在很多机器学习应用方面有很好的效果,例如单图片3D预测。...现存的很多基于光栅化的方法都有一定的缺陷,为此,作者提出了自己的框架DIB-R,一个可微的渲染器。...DIB-R:可微的基于插值的渲染器 DIB-R将前景栅格化处理为顶点属性的插值,可以生成真实的图像,其梯度可以通过所有预测的顶点属性完全反向传播,而将背景栅格化定义为学习过程中全局信息的聚合,可以更好地理解形状和遮挡...结果展示 从单一图像预测三维物体:几何形状和颜色: ? 基于3D IOU (%) / F-score(%)的单幅图像三维目标预测结果 ? 单幅图像三维目标预测的定性结果。
基于GAN的二维图像无监督三维形状重建 论文、代码地址:在公众号「计算机视觉工坊」,后台回复「二维图像GAN」,即可直接下载。 摘要: 自然图像是三维物体在二维图像平面上的投影。...同时,恢复的3D形状可以进行高质量的图像编辑,如重光照和对象旋转。研究人员定量地证明了该方法在三维形状重建和人脸旋转方面的有效性。...基于这种思想,研究者设计了一种迭代式挖掘并利用GAN图像空间中视角与光照信息的策略,算法框架如下图所示,具体算法步骤如下: (1) 用初始化的形状(椭球)和渲染器渲染很多不同视角与光照条件下的“伪样本”...; (2) 用预训练的GAN对伪样本进行重建,得到其在GAN图像空间的投影,“投影样本”。...基于“凸”形先验知识,研究人员的方法可以探索GAN图像中的视角和光照变化,并利用这些变化以迭代的方式细化底层物体形状。研究人员进一步展示了研究人员的方法在3D感知图像处理的应用,包括对象旋转和重光照。
每次循环后的特征矩阵用来重建高分辨率的图像( high-resolution ,HR),并且所有循环的重建方法都是一样的,每次循环会得到一个不同的HR预测,将所有预测结合返回一个精确的最后预测结果。...网络结构 基本模型 image.png 图1:基本的模型结构,包含了三个部分,嵌入式网络(Embedding network),将输入图像表示为一系列的特征映射,使用33的filter;推理网络(Inference...network)为主要部分,用于完成超分辨率任务,使用3\3的卷积;重建网络(Reconstruction network)将高分辨率图像(多通道)转变成原始状态(1或3通道)。...重建网络共享用于递归预测,使用中间循环的所有的预测结果得到最后的输出。...(b):采用深度监督(deep-supervision),与(a)不同,(b)中使用不同地重建网络用于循环,参数也更多;(c):(a)的扩展,没有参数共享(没有循环),权重参数的数量与深度的平方成正比。
概述 作者提出了一种能够推断出人类和物体的形状和空间排列的方法,只需要一张在自然环境中捕捉的图像,且不需要任何带有3D监督的数据集。...但是这样又会带来第二个问题,即获取大量带有3D监督的数据集是非常困难的,特别是在自然场景下。第三个问题是,尽管现在已经有成熟的技术来实现人类的重建,但是对于其他物体来说,这个工具并不太适用。 ?...作者设计了一个基于优化的框架。给定一张图片,首先检测人类和物体的实例,然后预测每个人的姿态和形状,并且通过mask优化每一个物体的3D姿势。...综合考虑各个方法,作者最后选择了3D回归网络【1】作为主体,用来恢复人体的三维形状和姿势。 从单张图片恢复物体的三维形状:在单目三维重建方面有大量的文献,例如采用对模型变形的方法。...在这项工作中,由于这些图像没有3D监督,作者采用传统的基于类别的模型拟合方法获得物体的初始6-DoF姿态,并细化其与场景中人类和其他物体的空间排列。
代码的解析已经给出,现在补上:单图像超分辨率重建示例代码解析 一、简介 图像超分辨率重建技术就是利用一组低质量、低分辨率图像(或运动序列)来产生单幅高质量、高分辨率图像。...图像超分辨率重建技术可以提高图像的识别能力和识别精度。图像超分辨率重建技术可以实现目标物的专注分析,从而可以获取感兴趣区域更高空间分辨率的图像,而不必直接采用数据量巨大的高空间分辨率图像的配置。...[1] 目前超分辨率技术主要有以下两大类:基于重建的方法、基于学习的方法。 1、基于重建的超分辨率技术: 基于重建的超分辨率方法的基础是均衡及非均衡采样定理。...2、基于学习的超分辨率技术 基于学习的方法是近年来超分辨率算法研究中的热点,它采用大量的高分辨率图像构造学习库产生学习模型,在对低分辨率图像进行恢复的过程中引入由学习模型获得的先验知识,以得到图像的高频细节...基于学习的方法充分利用了图像本身的先验知识,在不增加输入图像样本数量的情况下仍能产生高频细节,获得比基于重建方法更好的复原结果,并能较好的应用于人脸和文字等图像的复原。
介绍 目前,单幅图像的超分辨率重建大多都是基于样本学习的,如稀疏编码就是典型的方法之一。...基于卷积神经网络的超分辨率 公式化 使用双三次插值将单幅低分辨率图像变成我们想要的大小,假设这个内插值的图像为Y,我们的目标是从Y中恢复图像F(Y)使之尽可能与高分辨率图像X相似,为了便于区分,我们仍然把...(3)重建: 这个操作汇聚所有的高分辨率patch构成最够的高分辨率图像,我们期望这个图像能与X相似。...与基于稀疏编码方法的关系 基于稀疏编码的图像超分辨率方法也可以看作是一个卷积神经网络,如图3: ?...因此,网络规模的选择往往是时间和性能的权衡。 结论 我们提出了一种新的深度学习方法用于单幅图像的超分辨率重建,传统的基于稀疏编码的方法可以看作一个深的卷积神经网络。
引言 单图像超分辨率(SISR)的任务是旨在从其低分辨率版本重建出高质量的图像。基于CNN的网络在性能方面取得了显著的成功。然而,CNN的归纳偏置限制了SISR模型捕获长距离依赖性的能力。...为了克服与基于CNN的网络相关的局限性,研究人员引入了基于Transformer的SISR网络,利用其建模长距离依赖性的能力,从而增强SISR性能。...DRCT模型 网络架构概览 DRCT模型由三个主要部分组成:浅层特征提取、深层特征提取和图像重建模块。这些部分共同工作,以实现从低分辨率(LR)图像到高分辨率(HR)图像的高质量重建。...重建后的图像将等比例放大四倍。...在重建后的图像中,DRCT模型恢复了图像中的细节,如鸟类的羽毛细节和纹理,同时保持了图像的自然感和清晰度。
1.三维人脸重建 基于精细密集图像的人脸三维重建是计算机视觉和计算机图形学中一个长期存在的问题,其目标是恢复人脸的形状、姿态、表情、皮肤反射率和更精细的表面细节。...换句话说,人脸识别网络将输入的照片以及从重建的人脸中呈现的图像编码为特征向量,这些特征向量对姿态、表情、光照输入都具有鲁棒性。...然后,该方法应用一个损失来测量这两个特征向量之间的差异,而不是使用渲染图像和输入照片之间的像素级距离。仅使用人脸识别网络、可变形人脸模型和未标记人脸图像数据集训练三维人脸形状和纹理回归网络。...其他技术使用中间表示方法,例如Sela[7]使用基于U-Net的图像到图像转换网络来估计深度图像和面部对应图,然后执行基于迭代变形的配准和几何细化过程来重建细微的面部细节。...该方法利用合成渲染图像及其相关的真实三维场景进行训练。 3.数据集 下表列出并总结了最常用数据集的属性,与传统技术不同,基于深度学习的三维重建算法的成功与否取决于大型训练数据集的可用性。
基于深度学习的影像深度重建综述 论文名称:A Survey on Deep Learning Architectures for Image-based Depth Reconstruction 作者单位...2 研究背景介绍 图像三维重建的目的在于恢复真实物体和场景的三维结构,在机器人导航、物体识别、场景理解、三维建模等领域有重要应用。 从2D影像恢复深度可分为两部分。...3.5 多像匹配网络 除了从一个像对中重建深度(视差)图,也可以从n个像对中重建,也就是说将特征计算的网络分支复制n次。多像匹配网络分两种。 前期融合网络:如Fig. 5(a), (b), ©。...深度估计和其他基于影像理解的问题,比如影像分割,语义标注和场景解译,都有强烈的关系。通过利用这些任务之间的复杂属性,可以联合解决这些任务进而互相增强任务效果。...8 基于多像数据实验 TABLE 6比较了五种深度学习多视重建算法。
在这项研究中,研究人员将受试者连接到EEG设备上,向他们展示面部图像。他们的大脑活动被记录下来,然后使用基于机器学习算法的技术在受试者的脑海中以数字方式重建图像。...这不是研究人员第一次能够使用神经成像技术和基于视觉刺激重建图像。...这项研究证实了 EEG 具有用于此类图像重建的潜力。 如下图所示,在基于组数据的连续10毫秒窗口中,中性和快乐的人脸图像的重建结果。...A,在两个不同时间的脸部刺激及其相应的重建的例子(左上角的数字表明基于图像的重建精度估计)。B、重建精度的时间过程。...目前,Nestor的实验室正在进行的工作是测试如何利用记忆完成基于脑电图数据的图像重建,并将其应用于除人脸以外的更广泛的对象,最终也可能有广泛的临床应用。
摘要:基于卷积神经网络(CNN)的分段平面三维重建已然成为室内场景建模研究的焦点之一。...如观察一个典型的室内场景,可马上分辨出房间的天花板、地板、墙面等主要的平面,也可以准确识别桌面的水平表面等。因此,基于图像对室内场景平面信息的理解进而实现场景三维重建具有很好地研究价值。...为了解决上述问题,本文提出了一种基于自注意力增强(self-attention augment,SAA)的多尺度特征融合三维分段平面重建网络。...PlaneTR[10]联合上下文信息和几何结构可以从单幅图像中同时检测和重建平面。ZHANG等[11]使用基于平面参数的弱监督的二维分割进行布局估计。...为了证明算法的有效性,本文方法与PlaneNet[1],PlaneAE[4],PlaneRecNet[14]和InvPT[3]进行比较。其中对比方法均为基于单张图像的分段平面算法。
原文链接:如何学习图像三维重建? 前言 随着近几年机器人、自动驾驶、AR等技术的飞速发展,三维重建这个学术名词也逐渐出现在大众的视野中。那究竟什么是三维重建呢?...简单来说,三维重建是指用相机等传感器拍摄真实世界的物体、场景,并通过计算机视觉技术进行处理,从而得到物体的三维模型。如下所示。...下图是图像三维重建的基本流程: 三维重建应用 三维重建是增强现实(AR)、混合现实(MR)、机器人导航、自动驾驶等领域的核心技术之一。本文列举几个典型的应用场景: 自动驾驶。...比如AR游西湖之类的。很有趣的应用!...可以重建物体/人,得到三维模型,可以用来实现虚拟现实、增强现实、数字人等。企业里有较高的需求。 三维重建是个交叉学科,涉及到高等数学、计算机视觉、计算机图形学等学科,想要学透还挺不容易。
领取专属 10元无门槛券
手把手带您无忧上云