首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

SparkSql官方文档中文翻译(java版本)

下面是基于JSON文件创建DataFrame的示例: Scala val sc: SparkContext // An existing SparkContext. val sqlContext = new...一致化规则如下: 这两个schema中的同名字段必须具有相同的数据类型。一致化后的字段必须为Parquet的字段类型。这个规则同时也解决了空值的问题。...connect jdbc:hive2://localhost:10000 在非安全模式下,只需要输入机器上的一个用户名即可,无需密码。在安全模式下,beeline会要求输入用户名和密码。...如果在一个将ArrayType值的元素可以为空值,containsNull指示是否允许为空。...需要注意的是: NaN = NaN 返回 true 可以对NaN值进行聚合操作 在join操作中,key为NaN时,NaN值与普通的数值处理逻辑相同 NaN值大于所有的数值型数据,在升序排序中排在最后

9.1K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    SparkR:数据科学家的新利器

    摘要:R是数据科学家中最流行的编程语言和环境之一,在Spark中加入对R的支持是社区中较受关注的话题。...作为增强Spark对数据科学家群体吸引力的最新举措,最近发布的Spark 1.4版本在现有的Scala/Java/Python API之外增加了R API(SparkR)。...为了方便数据科学家使用Spark进行数据挖掘,社区持续往Spark中加入吸引数据科学家的各种特性,例如0.7.0版本中加入的python API (PySpark);1.3版本中加入的DataFrame...随后,来自工业界的Alteryx、Databricks、Intel等公司和来自学术界的普渡大学,以及其它开发者积极参与到开发中来,最终在2015年4月成功地合并进Spark代码库的主干分支,并在Spark...假设rdd为一个RDD对象,在Java/Scala API中,调用rdd的map()方法的形式为:rdd.map(…),而在SparkR中,调用的形式为:map(rdd, …)。

    4.1K20

    spark dataframe操作集锦(提取前几行,合并,入库等)

    spark dataframe派生于RDD类,但是提供了非常强大的数据操作功能。当然主要对类SQL的支持。 在实际工作中会遇到这样的情况,主要是会进行两个数据集的筛选、合并,重新入库。...首先加载数据集,然后在提取数据集的前几行过程中,才找到limit的函数。 而合并就用到union函数,重新入库,就是registerTemple注册成表,再进行写入到HIVE中。...scala> val fes = hiveContext.sql(sqlss) fes: org.apache.spark.sql.DataFrame = [caller_num: string, is_sr...> val zcount = zcfea.count() zcount: Long = 14208117 scala> val f01 = fes.limit(25000) f01: org.apache.spark.sql.DataFrame...类型的 12、 toDF(colnames:String*)将参数中的几个字段返回一个新的dataframe类型的, 13、 unpersist() 返回dataframe.this.type 类型,去除模式中的数据

    1.4K30

    【数据科学家】SparkR:数据科学家的新利器

    摘要:R是数据科学家中最流行的编程语言和环境之一,在Spark中加入对R的支持是社区中较受关注的话题。...作为增强Spark对数据科学家群体吸引力的最新举措,最近发布的Spark 1.4版本在现有的Scala/Java/Python API之外增加了R API(SparkR)。...为了方便数据科学家使用Spark进行数据挖掘,社区持续往Spark中加入吸引数据科学家的各种特性,例如0.7.0版本中加入的python API (PySpark);1.3版本中加入的DataFrame...随后,来自工业界的Alteryx、Databricks、Intel等公司和来自学术界的普渡大学,以及其它开发者积极参与到开发中来,最终在2015年4月成功地合并进Spark代码库的主干分支,并在Spark...假设rdd为一个RDD对象,在Java/Scala API中,调用rdd的map()方法的形式为:rdd.map(…),而在SparkR中,调用的形式为:map(rdd, …)。

    3.5K100

    大数据技术之_28_电商推荐系统项目_02

    我们这一章主要介绍前两部分,基于内容的推荐 和 基于 Item-CF 的推荐 在整体结构和实现上是类似的,我们将在第 7 章详细介绍。...4.2 离线统计服务 4.2.1 离线统计服务主体框架   在 recommender 下新建子项目 StatisticsRecommender,pom.xml 文件中只需引入 spark、scala...同样,我们应该先建好样例类,在 main() 方法中定义配置、创建 SparkSession 并加载数据,最后关闭 spark。...:在对 DataFrame 和 Dataset 进行操作许多操作都需要这个包进行支持     import spark.implicits._     // 将 MongoDB 中的数据加载进来,并转换为...数据集中任意两个商品间相似度都可以由公式计算得到,商品与商品之间的相似度在一段时间内基本是固定值。最后生成的数据保存到 MongoDB 的 ProductRecs 表中。 ?

    4.5K21

    深入理解XGBoost:分布式实现

    文章来源:公众号【Coggle数据科学】 写在前面 本文将重点介绍XGBoost基于Spark平台Scala版本的实现,带领大家逐步完成特征提取、变换和选择、XGBoost模型训练、Pipelines、...DataFrame API可以在Scala、Java、Python和R中使用。下面只介绍几个常用的API(更多API可以参考相关资料[插图])。...XGBoost4J-Spark在jvm-package中实现,因此在工程中调用XGBoost4J时,只需在pom.xml文件中加入如下依赖即可: ml.dmlc...以下示例将结构化数据保存在JSON文件中,并通过Spark的API解析为DataFrame,并以两行Scala代码来训练XGBoost模型。...missing:数据集中指定为缺省值的值(注意,此处为XGBoost会将 missing值作为缺省值,在训练之前会将missing值置为空)。 模型训练完成之后,可将模型文件进行保存以供预测时使用。

    4.2K30

    Spark数据工程|专题(1)——引入,安装,数据填充,异常处理等

    我们可以先建一个Scala的项目。如果是一开始安装IDEA的话,一开始要确认自己的Spark是否有安装(因为IDEA一般还是基于Java来编程的,自然不可能一开始就装好这个)。...Spark启动与读取数据 Spark读取的数据是基于分布式的,因此读取方法是专门设计的。...Spark实现空值填充 空值填充是一个非常常见的数据处理方式,核心含义就是把原来缺失的数据给重新填上。因为数据各式各样,因为处理问题导致各种未填补的数据出现也是家常便饭。...在这一部分,我们会介绍以平均数,中位数,众数和自己手动处理方式进行空值填充的方式。 现在我们考虑people.json,这个文件中,age这一列是存在一个空值的。...Request 6: 对多列进行空值填充,填充结果为各列已有值的平均值。

    6.5K40

    进击大数据系列(八)Hadoop 通用计算引擎 Spark

    Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。...Spark 优势 速度快 基于内存数据处理, 比MR快100个数量级以上(逻辑回归算法测试) 基于硬盘数据处理,比MR快10个数量级以上 易用性 支持Java、 Scala、 Python、 R语言 交互式...所以接下来我们来学习在强大的Yarn 环境 下 Spark 是如何工作的(其实是因为在国内工作中,Yarn 使用的非常多)。...DataFrame 可以简单的理解DataFrame为RDD+schema元信息 在Spark中,DataFrame是一种以RDD为基础的分布式数据集,类似传统数据库的二维表格 DataFrame带有schema...DataFrame(在2.X之后)实际上是DataSet的一个特例,即对Dataset的元素为Row时起了一个别名 DSL操作 action show以表格的形式在输出中展示 jdbcDF 中的数据,类似于

    43120

    Spark SQL 数据统计 Scala 开发小结

    1、RDD Dataset 和 DataFrame 速览 RDD 和 DataFrame 都是一个可以看成有很多行,每一行有若干列的数据集(姑且先按照记录和字段的概念来理解) 在 scala 中可以这样表示一个...每条记录是多个不同类型的数据构成的元组 RDD 是分布式的 Java 对象的集合,RDD 中每个字段的数据都是强类型的 当在程序中处理数据的时候,遍历每条记录,每个值,往往通过索引读取 val filterRdd...在 Spark 2.1 中, DataFrame 的概念已经弱化了,将它视为 DataSet 的一种实现 DataFrame is simply a type alias of Dataset[Row].../api/scala/index.html#org.apache.spark.sql.package@DataFrame=org.apache.spark.sql.Dataset[org.apache.spark.sql.Row...,将空值替换为 0.0 unionData.na.fill(0.0) 5、NaN 数据中存在数据丢失 NaN,如果数据中存在 NaN(不是 null ),那么一些统计函数算出来的数据就会变成 NaN,

    9.6K1916

    大数据技术之_24_电影推荐系统项目_06_项目体系架构设计 + 工具环境搭建 + 创建项目并初始化业务数据 + 离线推荐服务建设 + 实时推荐服务建设 + 基于内容的推荐服务建设

    -- mongodb 在 scala 上的驱动器 -->         spark.version>5.6.2spark.version>...4.1 离线推荐服务   在 recommender 下新建子项目 StatisticsRecommender,pom.xml 文件中只需引入 spark、scala 和 mongodb 的相关依赖:...同样,我们应该先建好样例类,在 main() 方法中定义配置、创建 SparkSession 并加载数据,最后关闭 spark。...数据集中任意两个电影间相似度都可以由公式计算得到,电影与电影之间的相似度在一段时间内基本是固定值。最后生成的数据保存到 MongoDB 的 MovieRecs【电影相似性矩阵】表中。   ...7.2 基于内容推荐的实现   基于以上思想,加入 TF-IDF 算法的求取电影特征向量的核心代码如下: package com.atguigu.content import org.apache.spark.SparkConf

    5.1K51

    简单回答:SparkSQL数据抽象和SparkSQL底层执行过程

    DataFrame是什么 在Spark中,DataFrame是一种以RDD为基础的分布式数据集,类似于传统数据库中的二维表格。...Dataset 引入 Spark在Spark 1.3版本中引入了Dataframe,DataFrame是组织到命名列中的分布式数据集合,但是有如下几点限制: 编译时类型不安全:Dataframe API...基于上述的两点,从Spark 1.6开始出现Dataset,至Spark 2.0中将DataFrame与Dataset合并,其中DataFrame为Dataset特殊类型,类型为Row。 ?...总结: Dataset是在Spark1.6中添加的新的接口,是DataFrame API的一个扩展,是Spark最新的数据抽象,结合了RDD和DataFrame的优点。...Step 2 : 在 AST 中加入元数据信息, 做这一步主要是为了一些优化, 例如 col = col 这样的条件, 下图是一个简略图, 便于理解 ?

    1.9K30

    Note_Spark_Day07:Spark SQL(DataFrame是什么和数据分析(案例讲解))

    05-[掌握]-DataFrame是什么及案例演示 在Spark中,DataFrame是一种以RDD为基础的分布式数据集,类似于传统数据库中的二维表格。...) // 应用结束,关闭资源 spark.stop() } } 10-[了解]-SparkSQL中数据处理方式 ​ 在SparkSQL模块中,将结构化数据封装到DataFrame或...尤其DBA和数据仓库分析人员擅长编写SQL语句,采用SQL编程 11-[掌握]-基于DSL分析(函数说明)和SQL分析 基于DSL分析 调用DataFrame/Dataset中API(...原因:在SparkSQL中当Job中产生Shuffle时,默认的分区数(spark.sql.shuffle.partitions )为200,在实际项目中要合理的设置。...在构建SparkSession实例对象时,设置参数的值 好消息:在Spark3.0开始,不用关心参数值,程序自动依据Shuffle时数据量,合理设置分区数目。

    2.3K40

    DataFrame的真正含义正在被杀死,什么才是真正的DataFrame?

    个人觉得这篇 paper 蛮有意义的,第一次(据我所知)试图在学术上对 DataFrame 做定义,给了很好的理论指导意义。 这篇文章我不会拘泥于原 paper,我会加入自己的理解。...pandas 于 2009 年被开发,Python 中于是也有了 DataFrame 的概念。这些 DataFrame 都同宗同源,有着相同的语义和数据模型。...Koalas 提供了 pandas API,用 pandas 的语法就可以在 spark 上分析了。...让我们再看 shift,它能工作的一个前提就是数据是排序的,那么在 Koalas 中调用会发生什么呢?...在我们看来,Mars 是真正的 DataFrame,它生来目标就是可扩展,而 Mars 又不仅仅是 DataFrame。在我们看来,Mars 在数据科学领域大有可为。

    2.5K30

    Spark SQL实战(04)-API编程之DataFrame

    Spark的DataFrame是基于RDD(弹性分布式数据集)的一种高级抽象,类似关系型数据库的表格。...DataFrame可从各种数据源构建,如: 结构化数据文件 Hive表 外部数据库 现有RDD DataFrame API 在 Scala、Java、Python 和 R 都可用。...在Scala和Java中,DataFrame由一组Rows组成的Dataset表示: Scala API中,DataFrame只是Dataset[Row]的类型别名 Java API中,用户需要使用Dataset...表示DataFrame 通常将Scala/Java中的Dataset of Rows称为DataFrame。...通过调用该实例的方法,可以将各种Scala数据类型(如case class、元组等)与Spark SQL中的数据类型(如Row、DataFrame、Dataset等)之间进行转换,从而方便地进行数据操作和查询

    4.2K20

    Spark_Day07:Spark SQL(DataFrame是什么和数据分析(案例讲解))

    05-[掌握]-DataFrame是什么及案例演示 在Spark中,DataFrame是一种以RDD为基础的分布式数据集,类似于传统数据库中的二维表格。...) // 应用结束,关闭资源 spark.stop() } } 10-[了解]-SparkSQL中数据处理方式 ​ 在SparkSQL模块中,将结构化数据封装到DataFrame或...尤其DBA和数据仓库分析人员擅长编写SQL语句,采用SQL编程 11-[掌握]-基于DSL分析(函数说明)和SQL分析 基于DSL分析 调用DataFrame/Dataset中API(...原因:在SparkSQL中当Job中产生Shuffle时,默认的分区数(spark.sql.shuffle.partitions )为200,在实际项目中要合理的设置。...在构建SparkSession实例对象时,设置参数的值 好消息:在Spark3.0开始,不用关心参数值,程序自动依据Shuffle时数据量,合理设置分区数目。

    2.6K50
    领券