首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

基于R的竞争风险模型的列线图

以往推文我们已经详细描述了基于R语言的实现方法,这里不再赘述。那么,您如何看待竞争风险模型呢?如何绘制竞争风险模型的列线图?在这里,我们演示如何绘制基于R的列线图。...主要原因是,如果哑变量出现在列线图中,结果将难以解释清楚。 因此,应避免在列线图中使用哑变量。 regplot包中的regplot()函数可以绘制更多美观的列线图。...但是,它目前仅接受由coxph(),lm()和glm()函数返回的回归对象。因此,为了绘制竞争风险模型的列线图,我们需要对原始数据集进行加权,以创建用于竞争风险模型分析的新数据集。...mstate包中crprep()函数的主要功能是创建此加权数据集,如下面的R代码所示。然后,我们可以使用coxph()函数拟合加权数据集的竞争风险模型,再将其给regplot()函数以绘制列线图。...R中的riskRegression包可以对基于竞争风险模型构建的预测模型进行进一步评估,例如计算C指数和绘制校准曲线等。

4.2K20

R语言入门之创建新的变量

‍‍‍‍‍ ‍‍今天,米老鼠想和大家聊聊如何在R中创建新的变量。‍‍一般‍‍‍‍‍‍‍‍‍‍我们可以使用赋值符号 中创建新的变量。...下面我主要介绍三种创建新变量的基本方法 ‍ # 方法一 # 我们在R中使用符号$来提取数据框里的变量 mydata$sum 的变量,...# 方法二 # 我们先将要操作的数据框用attach()函数固定 # 这种方法就不比使用$来提取数据框里的变量了 # 但在数据框中新建的变量,应使用$符号来指定该变量需添加到数据框中 attach...# 接下来的参数就是操作公式 # 公式左边是新变量名 # 公式右边是具体的操作 mydata <- transform( mydata, sum = x1 + x2, mean = (x1 + x2)...大家可以在今后的练习‍‍与实践中仔细摸索与体会。‍‍

2.4K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Vue中如何创建新的跳转界面

    Vue中如何创建新的跳转界面 由于自己在线教育网站距离上线的日子越来越近了,之前专注研究的都是有关如何用k8s部署相关的东西,没有太关注一些页面的东西。...我最开始接触javascript相关内容,都是在一步步接触开源框架过程中得到的机会。...如change,再声明好监听的函数,在界面的export default{...}中的methods就可以放置相应的回调函数,实现相应交互行为。...component被很多界面引入使用 如果你不想新建文件用于创建component,你可以用let声明的方式,之后把它声明到应用界面的components部分,这样,let指定的变量名称就直接可以在界面中当...我的作法是在src/components下创建对应业务的xx.vue文件,在使用的界面中通过类似import {VideoPlayer} from "components/VideoPlayer.vue

    19610

    盘一盘Tidyverse| 只要你要只要我有-filter 筛选行

    ) #[1] 83 11 本示例数据集很小,实际中数据量很大,可以根据使用filter()函数筛选出后续需要的“行”子集。...主要筛选函数: filter_all() 所有列参与筛选,根据筛选条件筛选 filter_if() 逻辑判断确定哪些列参与筛选,根据筛选条件筛选 filter_at() vars()函数定义哪些列参与筛选...,根据筛选条件筛选 首先指定哪些列,然后确定筛选器的条件,多数情况下,需要.操作符引向待筛选的值。...1 filter_all()筛选所有行 #筛选name:order, sleep_total, -vore中,任何一列包含“Ca”的所有行 msleep %>% select(name:order, sleep_total...()筛选条件列 优点:自定义待筛选的列,无需指定待筛选的列的类型 #筛选sleep_total, sleep_rem两个变量,所有值均大于5的行 msleep %>% select(name, sleep_total

    1.3K10

    如何在Django中创建新的模型实例

    在 Django 中,创建新的模型实例可以通过以下几个步骤进行,通常包括定义模型、创建模型实例、保存数据到数据库,以及访问和操作这些实例。...1、问题背景在 Django 中,可以使用 models.Model 类来创建模型,并使用 create() 方法来创建新的模型实例。但是,在某些情况下,可能会遇到无法创建新实例的问题。...例如,在下面的代码中,我们定义了一个 Customer 模型,并在 NewCustomer 视图中使用了 Customer.create() 方法来创建新的客户实例:class Customer(models.Model...2、解决方案这个问题的原因是,在 Customer 模型的 create() 方法中,并没有调用 save() 方法来将新的客户实例保存到数据库中。...因此,虽然我们创建了新的客户实例,但它并没有实际地存储在数据库中。

    11910

    Power BI: 使用计算列创建关系中的循环依赖问题

    文章背景: 在表缺少主键无法直接创建关系,或者需要借助复杂的计算才能创建主键的情况下,可以利用计算列来设置关系。在基于计算列创建关系时,循环依赖经常发生。...产品的价格有很多不同的数值,一种常用的做法是将价格划分成不同的区间。例如下图所示的配置表。 现在对价格区间的键值进行反规范化,然后根据这个新的计算列建立一个物理关系。...当试图在新创建的PriceRangeKey列的基础上建立PriceRanges表和Sales表之间的关系时,将由于循环依赖关系而导致错误。...在这个例子中,修复方法很简单:使用DISTINCT代替VALUES。一旦改用DISTINCT,就可以正常创建关系了。结果如下图所示。 正确设置关系后,可以按价格区间切片了。...由于两个依赖关系没有形成闭环,所以循环依赖消失了,可以创建关系。 3 避免空行依赖 创建可能用于设置关系的计算列时,都需要注意以下细节: 使用DISTINCT 代替VALUES。

    82220

    【Python】基于某些列删除数据框中的重复值

    导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 name = pd.read_csv('name.csv...从结果知,参数为默认值时,是在原数据的copy上删除数据,保留重复数据第一条并返回新数据框。 感兴趣的可以打印name数据框,删重操作不影响name的值。...从结果知,参数keep=False,是把原数据copy一份,在copy数据框中删除全部重复数据,并返回新数据框,不影响原始数据框name。...原始数据中只有第二行和最后一行存在重复,默认保留第一条,故删除最后一条得到新数据框。 想要根据更多列数去重,可以在subset中添加列。...但是对于两列中元素顺序相反的数据框去重,drop_duplicates函数无能为力。 如需处理这种类型的数据去重问题,参见本公众号中的文章【Python】基于多列组合删除数据框中的重复值。 -end-

    20.5K31

    Android R 中的heap新分配器——Scudo

    在Andorid R 中,将采用新的heap 分配器-Scudo,其特点是更安全,性能更好。...Scudo当前是Fuchsia中的默认分配器,已在Android的某些组件中启用,并在某些Google生产服务中使用。...至于存储在头文件中的数据,它保存分配的大小,块的状态(可用,已分配,隔离),其来源(malloc,new,new [])和一些内部数据。头是原子操作的,以检测在同一块上运行的线程之间的竞争尝试。...确保释放函数与返回目标块的分配函数一致(例如:free / malloc,delete / new);我们会随机分配一切,以尽可能降低可预测性;线程缓存的附带好处之一是,如果攻击者利用不同线程中的分配原语...Scudo的想法是“尽可能快地应对基于堆的错误,同时又具有弹性”。

    79610

    R语言第二章数据处理②选择行

    正文 这篇博客主要介绍学习以下R函数: slice():按位置提取行 filter():提取符合特定逻辑条件的行。 例如,iris%>%filter(Sepal.Length> 6)。...filter_all(),filter_if()和filter_at():过滤变量然后选择行。 这些函数复制所有变量或变量选择的逻辑标准。...sample_n():随机选择n行 sample_frac():随机选择一小部分行 top_n():选择变量排序的前n行 R语言常用的逻辑符号 <:少于 >:大于 <=:小于或等于 >=:大于或等于...Species”,从my_data创建一个新的演示数据集: #去掉Species列 my_data2 % select(-Species) #选择所有属性大于2的行 my_data2...2的行 my_data2 %>% filter_at(vars(starts_with("Sep")), any_vars(. > 2)) 根据缺失值筛选行 friends_data <- data_frame

    2.8K22

    TidyFriday 每天 5 分钟,轻轻松松上手 R 语言(四)

    基于范围的过滤 如果我们要筛选某一范围的值,可以用两个逻辑条件。...这时有两个选项: base R 的 grepl ()函数,或者用 stringr 包的 str_detect ()。 我们要注意 R 是区分大小写的!...dplyr 包还有几个功能强大的包,来支持我们跨列筛选 「filter_all」 现在有个需求,只要列值包含字母组合 Ca 我们就把这个观测值筛选出来,我们可以用any_vars() 结合str_detect...,字符型的变量中的值为空,而不管数值型的变量是否为空, 此时 filter_all 就不太好用了,filter_all(any_vars(is.na(.)))会将所有包含 NA 的列选出来,不符合我们的要求...is.numeric、 is.integer、 is.double、 is.logical、 is.factor等,我们的筛选手段 更加丰富了 「filter_at」 filter_at()可以用来筛选给定变量中符合某条件的观测值

    76630

    【Python】基于多列组合删除数据框中的重复值

    二、基于两列删除数据框中的重复值 1 加载数据 # coding: utf-8 import os #导入设置路径的库 import pandas as pd #导入数据处理的库...import numpy as np #导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 df =...如需数据实现本文代码,请到公众号中回复:“基于多列删重”,可免费获取。 得到结果: ?...由于原始数据是从hive sql中跑出来,表示商户号之间关系的数据,merchant_r和merchant_l中存在组合重复的现象。现希望根据这两列组合消除重复项。...numpy as np #导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 name = pd.read_csv

    14.7K30

    数据处理的R包

    MARGIN=2:操作基于列 MARGIN=c(1,2):对行和列都进行操作 FUN内置的函数有mean(平均值)、medium(中位数)、sum(求和)、min(最小值)、max(最大值),当然还包括自定义函数...教程,可以参考官方文档:http://plyr.had.co.nz/ 3.2.2 dplyr dplyr是一个强大的R包,用于处理,清理和汇总非结构化数据,使得R中的数据探索和数据操作变得简单快捷,也是出于...,语法如下: gather(data, key, value, na.rm = FALSE,···) data:需要被转换的宽形表 key:将原数据框中的所有列赋给一个新变量key value:将原数据框中的所有值赋给一个新变量...Lubridate包可以减少在R中操作时间变量,内置函数提供了很好的解析日期与时间的便利方法。lubridate 包是 Hadley Wickham开发的用于高效处理时间数据的 R 包。...可以方便的与ggplot进行涂层叠加,实现在R中的地图绘制需求。 ggmap包中的函数 get_map:ggmap包中最基本函数,用来下载地图。 geocode:用来返回某地的经纬度。

    4.7K20

    数据处理第3部分:选择行的基本和高级的方法

    这有两个主要选项:base R的grepl()函数,或stringr包中的str_detect()。 无论何时寻找部分匹配,重要的是要记住R是区分大小写的。...如果是这样,那么将对这些列执行过滤器指令。 *filter_at()要求你在vars()参数中指定要进行过滤的列。 在这些情况下,有一般语法:首先指定哪些列,然后提及过滤器的条件。...或者您只是过滤所有列的字符串“food”。 在下面的示例代码中,我在所有列中搜索字符串“Ca”。我想保留在任何变量中出现字符串“Ca”的行,所以我将条件包装在any_vars()中。...将是非常无用的,因为它将返回27行,其中许多是测量部分中缺少的数据。 在这种情况下:filter_if()派上用场。 描述列都是字符列,而测量数据是数字。...Filter at 其中一个更强大的函数是filter_at():它不会过滤所有列,也不需要你指定列的类型,你可以通过`vars()选择要发生更改的列。 论据。

    1.3K10

    如何在 Pandas 中创建一个空的数据帧并向其附加行和列?

    它类似于电子表格或SQL表或R中的data.frame。最常用的熊猫对象是数据帧。大多数情况下,数据是从其他数据源(如csv,excel,SQL等)导入到pandas数据帧中的。...在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。...Pandas.Series 方法可用于从列表创建系列。列值也可以作为列表传递,而无需使用 Series 方法。 例 1 在此示例中,我们创建了一个空数据帧。...然后,通过将列名 ['Name', 'Age'] 传递给 DataFrame 构造函数的 columns 参数,我们在数据帧中创建 2 列。...然后,通过将列名称 ['Batsman', 'Runs', 'Balls', '5s', '4s'] 传递给 DataFrame 构造函数的 columns 参数,我们在数据帧中创建了 6 列。

    28030

    R语言基于协方差的SEM结构方程模型中的拟合指数

    p=10165 ---- 在实践中, 因子负载较低(或测量质量较差)的模型的拟合指数要好于因子负载较高的模型。...c p = (δ / σ )2ncp=(δ/σ)2 Ñ Ç pncpχ 2χ2δδ  遵循以下决策规则:  所有这些 在R中实现。 ...delta = .4,因子加载的标准意味着如果模型中缺少因子加载并且因子加载大于.4。默认情况下,delta = .1。根据SSV的建议,这足以解决相关错误。因此,我仅使用选择相关错误作为输出。...可以解决所有非不确定性的关系(使用理论,修改等),并留下一个模型。 ---- PS:潜在变量建模的另一种方法是PLS路径建模。这是一种基于OLS回归的SEM方法。 ---- McNeish,D....潜在变量模型中测量质量和拟合指数截止之间的棘手关系。“人格评估杂志”。

    1.2K00

    R语言基于协方差的SEM结构方程模型中的拟合指数

    p=10165 ---- 在实践中, 因子负载较低(或测量质量较差)的模型的拟合指数要好于因子负载较高的模型。...c p = (δ / σ )2ncp=(δ/σ)2 Ñ Ç pncpχ 2χ2δδ  遵循以下决策规则:  所有这些 在R中实现。 ...delta = .4,因子加载的标准意味着如果模型中缺少因子加载并且因子加载大于.4。默认情况下,delta = .1。根据SSV的建议,这足以解决相关错误。因此,我仅使用选择相关错误作为输出。...可以解决所有非不确定性的关系(使用理论,修改等),并留下一个模型。 ---- PS:潜在变量建模的另一种方法是PLS路径建模。这是一种基于OLS回归的SEM方法。 ---- McNeish,D....潜在变量模型中测量质量和拟合指数截止之间的棘手关系。“人格评估杂志”。

    1.1K30
    领券