首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

[有意思的数学] 傅里叶变换和卷积与图像滤波的关系 (2)

昨天简单介绍了Fourier变换和卷积的概念,有了一个基本的认识之后,再看图像滤波,就不会觉得那么莫名其妙了。图像滤波这其实也是个大坑,里面涉及的东西很多,想通过今天这篇文章一下都掌握了,基本是不可能的。所以我这里就是给新手一个方向,如果想做图像方面的研究,该如何下手,然后怎么继续研究。但是我会尽力把涉及的点都提到,我觉得肯花时间来看我写的这篇文章,肯定是个好学好动手的好孩子。所以看完这个之后,最好再百度or Google一下,找点相关的资料,然后亲手动手实践一下就最好了,这样就有了一个全面的认识。 图像

06

[强基固本-视频压缩] 第三章:HEVC中的空间(帧内)预测

HEVC标准所实现的视频编码系统被分类为基于块的混合编解码器。“基于块”在这里意味着每个视频帧在编码过程中被划分为块,然后应用压缩算法。那么“混合”是什么意思呢?在很大程度上,编码过程中视频数据的压缩是通过从视频图像序列中消除冗余信息来实现的。显然,在时间上相邻的视频帧中的图像极有可能看起来彼此相似。为了消除时间冗余,在先前编码的帧中搜索与当前帧中要编码的每个块最相似的图像。一旦找到,该图像就被用作正在被编码的区域的估计(预测),然后从当前块的像素值中减去预测的像素值。在预测良好的情况下,差分(残差)信号包含的信息明显少于原始图像,这为压缩提供了保障。然而,这只是消除冗余的一种方法。HEVC提供了另一个选择,使用与当前块相同的视频帧中的像素值进行预测。这种预测被称为空间或帧内预测(intra)。因此,“混合”一词所指的是同时使用两种可能的方法来消除视频图像中的时间或空间冗余。还应当注意,帧内预测效率在很大程度上决定了整个编码系统的效率。现在让我们更详细地考虑HEVC标准提供的帧内预测的方法和算法的主要思想。

01

【ICCV 目标跟踪性能最优】首个应用残差学习的深度目标跟踪算法

【新智元导读】不同于在目标检测和识别等领域取得的丰硕成果,深度学习在目标跟踪领域进展相对缓慢,很大原因是缺乏数据——目标跟踪只有第一帧的标定框作为训练数据,在这种情况下训练一个深度模型十分困难。现有的基于深度学习的方法从几个不同的角度解决这个问题,但在跟踪速度和精度方面仍有很大的提升空间。 在目标追踪界泰斗、UC Merced 杨明玄教授的指导下,香港城市大学、阿德莱德大学、SenseNet的研究人员从深度学习的角度出发,提出了一种端到端的跟踪模型,将特征提取和响应生成融合在深度学习框架中,只采用单层卷积的

07

ICML 2022 | 基于结构化数据的异常检测再思考: 我们究竟需要怎样的图神经网络?

机器之心专栏 机器之心编辑部 图神经网络(GNN)被广泛应用于结构化数据的异常检测,例如社交网络恶意账号检测、金融交易欺诈检测等。香港科技大学和斯坦福大学的研究者首次从谱域的角度(即图拉普拉斯矩阵的谱分解)分析了异常数据可能造成的影响。核心发现是:异常数据将导致频谱能量出现 “右移” 现象,即频谱能量分布从低频向高频移动。基于这一发现,他们又提出了 Beta 小波图神经网络(BWGNN)。它拥有多个具有局部性的带通滤波器,能够更好捕获 “右移” 产生的高频异常信息。在四个大规模图异常检测数据集上,BWGNN

03

学习笔记:深度学习之“学习”

在上一篇文章中,我们谈到机器学习“学习”的是“规则”。进一步而言,机器学习需要一套评判机制来测量相应机器学习算法的性能。这套评判机制需要将当前输出与期望输出的“差异”做为反馈信号来调整算法。这个调整的过程就是所谓的“学习”。这种“学习”其实并不陌生。在数字信号处理中,有一类滤波器称为自适应滤波器(Adaptive Filter),它能够根据输入信号自动调整性能进行数字信号处理,如下图所示。输入信号x(n)通过参数可调数字滤波器后产生输出信号(或响应)y(n),将其与参考信号(或称期望响应)d(n)进行对比,形成误差信号e(n),并以此通过某种自适应算法对滤波器参数进行调整,最终使e(n)的均方值最小。常常将这种输入统计特性未知,调整自身的参数到最佳的过程称为“学习过程”。将输入信号统计特性变化时,调整自身的参数到最佳的过程称为“跟踪过程”,因此,自适应滤波器具有学习和跟踪的性能。

02

ICML 2022 | 基于结构化数据的异常检测再思考: 我们究竟需要怎样的图神经网络?

来源:机器之心本文约2700字,建议阅读5分钟本文提出了图异常检测的新工具 ——Beta 小波图神经网络 (BWGNN)。 图神经网络(GNN)被广泛应用于结构化数据的异常检测,例如社交网络恶意账号检测、金融交易欺诈检测等。香港科技大学和斯坦福大学的研究者首次从谱域的角度(即图拉普拉斯矩阵的谱分解)分析了异常数据可能造成的影响。核心发现是:异常数据将导致频谱能量出现 “右移” 现象,即频谱能量分布从低频向高频移动。基于这一发现,他们又提出了 Beta 小波图神经网络(BWGNN)。它拥有多个具有局部性的带通

04
领券