首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

多索引级别上的groupby和删除分组级别

是指在数据分析和处理中,根据多个索引级别对数据进行分组聚合和删除指定分组级别的操作。

在Pandas库中,可以通过使用多级索引(MultiIndex)来实现多索引级别上的groupby操作。MultiIndex是一种由多个层次化索引构成的数据结构,可以提供更高维度的分组和聚合操作。

首先,我们需要创建一个包含多级索引的DataFrame对象。可以使用pd.MultiIndex.from_arrayspd.MultiIndex.from_tuples方法创建MultiIndex对象,然后将其赋值给DataFrame的index属性。

示例代码如下:

代码语言:txt
复制
import pandas as pd

# 创建多级索引
index = pd.MultiIndex.from_arrays([['A', 'A', 'B', 'B'], ['X', 'Y', 'X', 'Y']], names=['Group1', 'Group2'])

# 创建带有多级索引的DataFrame
df = pd.DataFrame({'Data': [1, 2, 3, 4]}, index=index)

print(df)

输出结果为:

代码语言:txt
复制
             Data
Group1 Group2     
A      X        1
       Y        2
B      X        3
       Y        4

接下来,我们可以使用groupby方法按照指定的多个索引级别对数据进行分组,然后应用聚合函数进行计算。例如,可以使用sum方法对分组后的数据求和。

示例代码如下:

代码语言:txt
复制
grouped = df.groupby(level=['Group1', 'Group2'])
result = grouped.sum()

print(result)

输出结果为:

代码语言:txt
复制
              Data
Group1 Group2      
A      X         1
       Y         2
B      X         3
       Y         4

此外,如果想要删除特定的分组级别,可以使用drop方法结合level参数指定要删除的级别。

示例代码如下:

代码语言:txt
复制
new_df = df.drop(labels='A', level='Group1')

print(new_df)

输出结果为:

代码语言:txt
复制
             Data
Group1 Group2     
B      X        3
       Y        4

对于多索引级别上的groupby和删除分组级别的应用场景,可以适用于复杂的数据分析和统计任务,特别是当数据具有多个层次化结构时。例如,可以在金融领域中对不同时间段的不同证券进行聚合分析,或者在销售领域中对不同地区和不同产品类别的销售数据进行统计。

在腾讯云的产品中,推荐使用TencentDB作为数据库存储,Tencent Cloud CVM作为服务器运维平台,腾讯云对象存储(COS)作为存储服务,腾讯云云原生微服务平台(Tencent Kubernetes Engine,TKE)作为云原生解决方案。相关产品和介绍链接如下:

  • TencentDB:https://cloud.tencent.com/product/cdb
  • Tencent Cloud CVM:https://cloud.tencent.com/product/cvm
  • Tencent Cloud COS:https://cloud.tencent.com/product/cos
  • Tencent Kubernetes Engine (TKE):https://cloud.tencent.com/product/tke

需要注意的是,以上推荐的产品仅作为参考,并非直接回答问题的内容。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Python数据分析实战基础 | 清洗常用4板斧

04 分——分组和切分 话天下大势,合久必分,数据亦是如此。在分组的版块中,我们重点介绍groupby分组和cut切分。...4.1分组 在案例数据中,总的流量级别有三级,每一级下又有多个投放地区,如果我们想汇总看每个级别流量所对应的总访客数和支付金额,就需要用到分组了。...groupby是分组函数,最主要的参数是列参数,即按照哪一列或者哪几列(多列要用列表外括)进行汇总,这里是按照流量级别: 可以看到,直接分组之后,没有返回任何我们期望的数据,要进一步得到数据,需要在分组的时候对相关字段进行计算...此处我们只想要各级别流量下的访客数和支付金额,需要指明参数: 流量级别作为汇总的依据列,默认转化为索引列,如果我们不希望它变成索引,向groupby内传入参数as_index = False即可:...下面我们直接对分组后的数据进行打标,访客数在0-99设置为“辣鸡”,100-999设置为百级,千级和万级以此类推,同时将打好标签的数据作为新列给到源数据: 非常高效,一行半代码就搞定了分组、判断和打标的过程

2.1K21

Pandas实现列表分列与字典分列的三个实例

由于列索引多了一级,所以需要删除: df.agg({"补回原因": lambda x: x, "tmp": pd.Series}).droplevel(0, axis=1).head() 结果: ?...droplevel(0, axis=1)用于删除多级索引指定的级别,axis=0可以删除行索引,axis=1则可以删除列索引,第一参数表示删除级别0。...分布解析: 首先将每个姓名的得分聚合成列表,并最终返回一个Series: df.groupby("姓名")["得分"].apply(list) 结果: 姓名 孙四娘 [7, 28]...Series的内部方法: df.groupby("姓名")["得分"].apply(lambda x:x.to_list()) 使用Series内部方法的性能比python列表方法转换快一些。...**.apply(pd.Series)则可以将每个字典对象转换成Series,则可以将该字典扩展到多列,并将原始的Series转换为Datafream。

1.8K10
  • Pandas进阶|数据透视表与逆透视

    ('mean') 通过unstack重排数据表 如果原表只有一级索引,unstack就将每一个列都分出来,然后全部纵向叠加在一起,每一个列名作为新的一级索引,原本的索引作为二级索引。...如果原表有二级索引,那么unstack就会将二级索引作为新的列名,一级索引作为新的索引。...可以使任何对groupby有效的函数 fill_value 用于替换结果表中的缺失值 dropna 默认为True margins_name 默认为'ALL',当参数margins为True时,ALL行和列的名字...行索引和列索引都可以再设置为多层,不过行索引和列索引在本质上是一样的,大家需要根据实际情况合理布局。...'value_vars' 的数据组成的新的 column name col_level 如果列是MultiIndex,则使用此级别 df = data.loc[:,['driver_gender',

    4.3K11

    【数据处理包Pandas】数据透视表

    ),此时行索引和列索引分别有2级。...df2 = df2.unstack(level=2) df2 小结: (1)stack是把列索引变成行索引,unstack是把行索引变成列索引,默认都是改变最低级的索引;如果需要要修改其他级别的索引...,它可以根据一个或多个键对数据进行聚合,并根据行和列上的分组键将数据分配到各个矩形区域中。...第1个参数是data参数,提供了绘制数据透视表的数据来源,可以是整个 DataFrame,也可以是 DataFrame 的子集;index和columns参数指定了行分组键和列分组键;values指定想要聚合的数据字段名...写法: df.groupby(['年份','课程'])['富强','李海','王亮'].max().unstack() 三、交叉表 交叉表是一种用于计算分组频率的特殊透视表,可以pivot_table实现同样的功能

    7400

    Python替代Excel Vba系列(四):课程表分析与动态可视化图表

    我们把汇总问题的主键列出,利用 pandas 的 groupby 方法即可快速做汇总。 如下: df.groupby(['sj_class']) ,按 sj_class 分组。...看看每个级别的主科目占比情况。如下: 这次我们的汇总主键是 级别和主科目。 可以看到其实与之前的流程基本一致,只是在分组时加上了 grade 字段。...---- ---- 首先,每位教师的上下午课时数量。主键是 教师和上下午。 代码如下: 分组汇总与之前的一致。只是主键不同而已。...---- .set_index(['teach','apm']) ,先让 teach 和 apm 做行索引。 此时 apm 行索引中都有上午和下午的值。....unstack() ,把 apm 从行索引移到列索引。那么就会有 上午列 和 下午列。 注意此时,如果一位教师只有下午的课,那么此列他的值就为 nan。

    1.7K20

    Python之数据聚合与分组运算

    Python之数据聚合与分组运算 1. 关系型数据库方便对数据进行连接、过滤、转换和聚合。 2....Hadley Wickham创建了用于表示分组运算术语“split-apply-combine”(拆分-应用-合并)。 3. GroupBy的size方法,它可以返回一个含有分组大小的Series。...选取一个或以组列 对于由GroupBy对象,如果用一个(单个字符串)或一组(字符串数组)列名对其进行索引,就能实现选取部分列进行聚合的目的。 6. 通过字典或Series进行分组。 7....根据索引级别分组:层次化索引数据集最方便的地方就在于它能够根据索引级别进行聚合。要实现该目的,通过level关键字传入级别编码或者名称即可。 8....11 分位数和桶分析 pandas有一些可以根据指定面元或样本分位数将数据拆分成多块的工具(比如cut和qcut)。

    1.2K90

    数据整合与数据清洗

    选择多列。ix、iloc、loc方法都可使用。 只不过ix和loc方法,行索引是前后都包括的,而列索引则是前包后不包(与列表索引一致)。 iloc方法则和列表索引一致,前包后不包。...06 分组汇总 groupby方法可以进行分组汇总。agg方法则可一次汇总多个统计量。...# 对性别分组,汇总点赞数,获取点赞数最大值 print(df.groupby('gender')[['praise']].max()) # 对性别和年龄分组,获取点赞数的平均值 print(df.groupby...(['gender', 'age'])[['praise']].mean()) # 对性别分组,获取点赞数和年龄的平均值 print(df.groupby(['gender'])[['praise',...'age']].mean()) # 对性别分组,获取性别的计数值 print(df.groupby(['gender'])[['gender']].count()) # 多重索引 print(df.groupby

    4.6K30

    Pandas

    进行切片,对行的指定要使用索引或者条件,对列的索引必须使用列名称,如果有多列,则还需要借助[]将列名称括起来。...多级索引建立与单个索引相似,只需将每一级各个值对应的索引名称传给 index 参数即可,每一级的索引单独组成一个列表,传入 index 的参数应为列表的嵌套。...list 的索引,值为 list 的索引值 分组 Pandas 提供了 DataFrame.groupby()方法,按照指定的分组键,将具有相同键值的记录划分为同一组,将具有不同键值的记录划分到不同组...columns:列分组键 values:数值计算键 aggfunc: 聚合函数 ,默认为平均值函数 margins: 接收布尔值,表示是否对透视表的行和列进行汇总 dropna:是否删除全为Nan的列,...对象后进行分组的描述性统计分析(具体使用方法见分组小节) 多统计量 DataFrame.describe()方法默认返回 DataFrame 全部或指定数值型字段的和、均值、标准差、最小值、最大值、

    9.2K30

    Pandas统计分析-分组->透视->可视化

    数据 分组 聚合 运算 聚合 ‘ 飞行综合 flights = pd.read_csv('data/flights.csv') 1 显示部分数据 2 按照AIRLINE分组, 使用agg方法, 传入要聚合的列和聚合函数...flights.groupby('AIRLINE').agg({'ARR_DELAY':'mean'}).head() 3 或者要选取的列使用索引, 聚合函数作为字符串传入agg flights.groupby...6 # 用列表和嵌套字典对多列分组和聚合 # 对于每条航线, 找到总航班数, 取消的数量和比例,飞行时间的平均时间和方差 group_cols = ['ORG_AIR', 'DEST_AIR'] agg_dict...).agg(agg_dict).head() 7 # 按'AIRLINE', 'WEEKDAY'分组, 分别对DIST和ARR_DELAY聚合 airline_info = flights.groupby...大学数据集 删除这三列缺失值 数据透视表 数据透视表 交叉表 综合练习 读取显示前8 表中数据做索引,后面列都是数值 Pandas可视化 线性表 四列累加和的直方图 柱状图 bar

    1.5K11

    groupby函数详解

    df[‘data1’].groupby([states,years]).mean() 分组键与原df无关,而是另外指定的任何长度适当的数组 分组键是数组,state和year均为数组 备注: grouped...1 groupby()核心用法 (1)根据DataFrame本身的某一列或多列内容进行分组聚合,(a)若按某一列聚合,则新DataFrame将根据某一列的内容分为不同的维度进行拆解,同时将同一维度的再进行聚合...,(b)若按某多列聚合,则新DataFrame将是多列之间维度的笛卡尔积,即:新DataFrame具有一个层次化索引(由唯一的键对组成),例如:“key1”列,有a和b两个维度,而“key2”有one和...() 分组键为具有多重列索引df 的列索引层次 hier_df.groupby(level=‘cty’,axis=1).count() #利用参数level,指明聚合的层级 (3)常用配合函数/方法...#根据df的多重列索引的层次级别分组聚合 #自定义列层次索引 columns=pd.MultiIndex.from_arrays([['US','US','US','JP','JP'],[1,3,5,1,3

    3.8K11

    Pandas部分应掌握的重要知识点

    索引器中括号内行列下标的位置上都允许使用切片和花式索引,下例中行使用切片,列使用花式索引。 注意:下面的3:5表示下标为3和4的两行,[0,2]表示下标为0和2的两列。...df.loc[2,:]=["Rose","Sales","Female",3500] print("修改标签为2的行之后:") df 5、删除一列或多列数据 使用drop函数,并且指定axis=1才能删除列...如果要删除多列,则要结合标签的花式索引形式: df.drop(['sex','salary'],axis=1,inplace=True) #inplace=True表示原地修改,即修改的结果直接作用于当前对象...('team')['Q1'].mean() 方法2:先分组再计算最后选择列 #注意本例中,选择两列时使用了花式索引(如果只有一列,则无需使用花式索引) team.groupby('team').mean...()[['Q1','Q2']] #如果如果只有一列,则无需使用花式索引,如下所示: #team.groupby('team').mean()['Q1'] 2、找到满足条件的分组(过滤掉不满足条件的分组

    4700

    总结了67个pandas函数,完美解决数据处理,拿来即用!

    ),但需要注意的是loc是按索引,iloc参数只接受数字参数 df.ix[[:5],["col1","col2"]] # 返回字段为col1和col2的前5条数据,可以理解为loc和 iloc的结合体...() # 检查DataFrame对象中的⾮空值,并返回⼀个Boolean数组 df.dropna() # 删除所有包含空值的⾏ df.dropna(axis=1) # 删除所有包含空值的列 df.dropna...(col) # 返回⼀个按列col进⾏分组的Groupby对象 df.groupby([col1,col2]) # 返回⼀个按多列进⾏分组的Groupby对象 df.groupby(col1)[col2...=[col2,col3],aggfunc={col2:max,col3:[ma,min]}) # 创建⼀个按列col1进⾏分组,计算col2的最⼤值和col3的最⼤值、最⼩值的数据透视表 df.groupby...(col1).agg(np.mean) # 返回按列col1分组的所有列的均值,⽀持 df.groupby(col1).col2.agg(['min','max']) data.apply(np.mean

    3.5K30

    首次公开,用了三年的 pandas 速查表!

    df.query('i0 == "b" & i1 == "b"') # 多索引查询方法 2 # 取多索引中指定级别的所有不重复值 df.index.get_level_values(2).unique...返回一个按列col进行分组的Groupby对象 df.groupby([col1,col2]) # 返回一个按多列进行分组的Groupby对象 df.groupby(col1)[col2] # 返回按列...col1进行分组后,列col2的均值 # 创建一个按列col1进行分组,并计算col2和col3的最大值的数据透视表 df.pivot_table(index=col1,...='temperature') # 交叉表是用于统计分组频率的特殊透视表 pd.crosstab(df.Nationality,df.Handedness) # groupby 后排序,分组 agg 内的元素取固定个数...() # groupby 分组+去重的值及数量 df.groupby('name').agg(['sum', 'median', 'count']) 12 数据合并 # 合并拼接行 # 将df2中的行添加到

    7.5K10

    Pandas三百题

    片名 列全部重复值 df[df['片名'].duplicated()] 20-删除重复值 删除全部的重复值 df.drop_duplicates() 21-删除重复值|指定 删除全部的重复值,但保留最后一次出现的值...() df.groupby("district")['salary'].mean() 2 - 分组统计|取消索引 重新按照上一题要求进行分组,但不使用 district 做为索引 df.groupby(...),不同规模公司(companySize)出现的次数 df.groupby(['district','companySize']).size() 5 - 分组统计|修改索引名 将上一题的索引名修改为 district...- 分组规则|通过字典 将 score 和 matchScore 的和记为总分,与 salary 列同时进行分组,并查看结果 df.groupby({'salary':'薪资','score':'总分...=['销售额','利润'],index='省/自治区',aggfunc=['sum']) 6 - 数据透视|多索引 制作「各省市」与「不同类别」产品「销售总额」的数据透视表 pd.pivot_table

    4.8K22

    Pandas入门教程

    ) axis表示轴向,axis=1,表示纵向(删除一列) 2.3 索引操作 loc loc主要是基于标签(label)的,包括行标签(index)和列标签(columns),即行名称和列名称,可以使用df.loc...shanghai') # 同于字符串替换 四、数据表操作 分组 groupby group = data.groupby(data['name']) # 根据职位名称进行分组 group 根据职位名称进行分组...使用传递的键作为最外层构建分层索引。如果通过了多个级别,则应包含元组。 levels: 序列列表,默认无。用于构建 MultiIndex 的特定级别(唯一值)。否则,它们将从密钥中推断出来。...Series 对象;right:另一个 DataFrame 或命名的 Series 对象; on: 要加入的列或索引级别名称; left_on:左侧 DataFrame 或 Series 的列或索引级别用作键...可以是列名称、索引级别名称或长度等于 DataFrame 或 Series 长度的数组;right_on:来自正确 DataFrame 或 Series 的列或索引级别用作键。

    1.1K30

    《Pandas Cookbook》第07章 分组聚合、过滤、转换1. 定义聚合2. 用多个列和函数进行分组和聚合3. 分组后去除多级索引4. 自定义聚合函数5. 用 *args 和 **kwargs

    # 用列表和嵌套字典对多列分组和聚合 # 对于每条航线,找到总航班数,取消的数量和比例,飞行时间的平均时间和方差 In[12]: group_cols = ['ORG_AIR', 'DEST_AIR'...# 行和列都有两级索引,get_level_values(0)取出第一级索引 In[15]: level0 = airline_info.columns.get_level_values(0)...airline_info.columns.get_level_values(1) level1 Out[16]: Index(['sum', 'mean', 'min', 'max'], dtype='object') # 一级和二级索引拼接成新的列索引...更多 # Pandas默认会在分组运算后,将所有分组的列放在索引中,as_index设为False可以避免这么做。...In[44]: grouped.ngroups Out[44]: 112 # 查看每个分组的唯一识别标签,groups属性是一个字典,包含每个独立分组与行索引标签的对应 In[45]: groups

    8.9K20

    《利用Python进行数据分析·第2版》第10章 数据聚合与分组运算10.1 GroupBy机制10.2 数据聚合10.3 apply:一般性的“拆分-应用-合并”10.4 透视表和交叉表10.5 总

    任何被当做分组键的函数都会在各个索引值上被调用一次,其返回值就会被用作分组名称。具体点说,以上一小节的示例DataFrame为例,其索引值为人的名字。...层次化索引数据集最方便的地方就在于它能够根据轴索引的一个级别进行聚合: In [47]: columns = pd.MultiIndex.from_arrays([['US', 'US', 'US',...,分组键会跟原始对象的索引共同构成结果对象中的层次化索引。...我曾在第8章中讲过,pandas有一些能根据指定面元或样本分位数将数据拆分成多块的工具(比如cut和qcut)。...在Python和pandas中,可以通过本章所介绍的groupby功能以及(能够利用层次化索引的)重塑运算制作透视表。

    5K90
    领券