展开

关键词

重磅:腾讯云发布融合新功能,免费体验

9月4日,腾讯云正式发布融合新产品,该产品在之前单融合的基础上,新增多融合和选融合。同时,内置新型算法,让融合效果表现更优异。 /document/api/670/37736 SDK 接入参考:https://cloud.tencent.com/document/product/670/31061#SDK 【产品能力】 1- /选融合 支持、选融合,最多支持指定融合3张人脸,可应用在全家福、与明星合照等多人场景,增加活动的互动趣味性。 2.png 2-应用于文娱、美妆、换类小程序、APP 为文娱、美妆、换等小程序、APP提供单融合功能,间接帮助拉新、导流、提升活跃与留存。 1.png 【限时福利】 现购买人脸融合活动授权费、QPS、资源包,享有 9月限时8折特惠。 【小程序体验】 “腾讯云AI体验中心”小程序已同步上线单/融合产品,扫码即可体验。

931144

帧数据融合思路

一.对数据的输入 A、如何获取你的点云数据(使用什么设备,查找相应设备的介绍,设备的精度、稳定度、抗噪能力、数据的可视深度范围等,采用无标记点融合,或标记点融合;要考虑帧数据之间的旋转角度); B、如何将你的数据对象从环境中分割出来 (识别分割、手动分割CC),深度学习若能做分割,并且针对特定对象的效果还行的话,再结合PCL做帧数据的融合,是一个创新点(前提是提高效率); C、对数据的输入输出要掌握,一般程序都是一样的,复制粘贴即可 二、对数据的预处理(融合肯定至少两帧数据) A、数据是否有噪声:根据噪声的类别,选择合适的算法进行去除(直通滤波、条件滤波、统计滤波、双边滤波等等); B、数据是否需要下采样:体素栅格滤波(参数的设置, 根据自己的目的,参考北航出的国内唯一一本PCL的书,同时兼顾PCL官网的更新内容); B、精配准执行前的准备:是否建立空间拓扑关系(一般需要建立,加快计算速度); C、是否需要剔除错误点对(一般需要剔除,提高融合精度 书以及官网都可查阅); D、执行计算,并输出精配准融合点云对象,输出精配R和T,输出精配时间,并可视化(保存或可视化都行)。

1.3K20
  • 广告
    关闭

    【玩转 Cloud Studio】有奖调研征文,千元豪礼等你拿!

    想听听你玩转的独门秘籍,更有机械键盘、鹅厂公仔、CODING 定制公仔等你来拿!

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    传感融合 Lidar and Radar Fusion

    对于无人驾驶系统而言,传感器已经是默认配置 一个简单的感知反馈模型其实只有两步:状态预测与测量更新 在传感器条件下,各传感器之间想要同步反馈速度其实并无必要。

    8020

    模态融合技术综述和应用

    文章目录 模态技术基础 1,模态融合架构(神经网络模型的基本结构形式) 1.1联合架构 1.2协同架构 1.3编解码架构(自监督) 2,模态融合方法 2.1早期融合 2.2 晚期融合 2.3混合融合 3,模态对齐方法 3.1显式对齐方法 3.2隐式对齐方法 4,开放数据与资源 模态深度学习综述:网络结构设计和模态融合方法汇总 基于注意力机制的融合方法 基于双线性池化的融合办法 应用1:模态摘要 1,模态融合架构(神经网络模型的基本结构形式) 模态融合的主要目标是缩小模态间的异质性差异,同时保持各模态特定语义的完整性,并在深度学习模型中取得最优的性能。 2,模态融合方法 将模态融合方法分为两大类:模型无关的方法和基于模型的方法,前者不直接依赖于特定的深度学习方法,后者利用深度学习模型显式地解决模态融合问题,例如基于核的方法、图像模型方法和神经网络方法等 4,开放数据与资源 模态深度学习综述:网络结构设计和模态融合方法汇总 基于注意力机制的融合方法 基于双线性池化的融合办法 应用1:模态摘要(综合模态信息生成内容摘要) 模态摘要(Multi-modal

    14620

    Couresa传感器融合代码实现

    Tips: 代码可以配合自动驾驶定位算法(十五)-基于传感器融合的状态估计(Multi-Sensors Fusion)进行阅读。 推荐阅读 自动驾驶定位算法(十五)-基于传感器融合的状态估计(Multi-Sensors Fusion) 自动驾驶定位算法(十四)-递归贝叶斯滤波 自动驾驶定位算法(十三)-粒子滤波(Particle

    9600

    业务融合推荐策略实践与思考

    58同城 架构师 编辑整理:陈佳琪、李元 内容来源:DataFunTalk 导读:58同城作为分类信息网站,服务覆盖多个领域,如房屋租售、招聘求职、二手买卖等等,不同的业务有不同的特点,这使得多业务融合推荐成为一大挑战 业务:首页的访问量较大(千万级别pv),如何把流量分配给不同的业务就很关键。 推荐感知:虽然用户的目标单一,但是如何做到推荐结果的多样性就需要对其优化。 ? 兴趣策略 这个优化主要针对第一个挑战:强兴趣下的业务融合。 ? 常见的推荐系统,如新闻推荐、视频推荐、商品推荐等都是要先建立用户和商品之间的联系,然后通过适当的算法进行匹配。 业务流量分配策略 这个优化主要针对第二个挑战:业务之间的流量均衡 实际业务需求: ? 目前负责 APP 首页业务信息流推荐,致力于通过融合业务、策略推荐系统的迭代升级,支持流量分发,优化连接效率,提升用户体验。 今天的分享就到这里,谢谢大家。

    49321

    柔性传感器——源信息融合

    support_redirect=0&mmversion=false 附1、非常欣赏本论文的表达形式:把传感器与具体的应用场景糅合起来,通过视频的方式,让大众能够直观了解到该传感器的价值~ 附2、认同源信息融合是传感器发展的方向

    8020

    Wiztalk | 刘勇 《融合SLAM:现状与挑战》

    融合SLAM:现状与挑战 简介:协同定位与建图(SLAM),相信大家对这个概念应该都很陌生,但在机器人身上,这可是一项重要的技术。

    36620

    Appium系列(十八)设备并行执行测试用

    前言 在上一篇文章--Appium系列(十七)将Appium服务端口号通过参数传递给测试用例,我们处理了通过参数传递给appium服务,那么这节课呢,我们要改造,改造成设备并行执行测试用例 正文 之前有两篇文章,Appium自动化(九)如何处理设备的启动参数和 Appium自动化(十)如何控制设备并行执行测试用例讲解了设备执行的一些要领,那么今天呢,我们来看下, 如何把现有的改造成设备并行的。 那么runnerCaseApp如何管理用例呢,其实很简单 def runnerCaseApp(devices): '''利用unittest的testsuite来组织测试用例 unittest.TestSuite() test_suit.addTest(Parmer.parametrize(testcase_klass=testCase, parame=devices)) # 扩展的其他的测试用例均这样添加

    67930

    模态情感识别_模态融合的情感识别研究「建议收藏」

    情感表达的模态包括面部表情、语音、姿势、生理信号、文字等,情感识别本质上是一个模态融合的问题。 提出一种模态融合的情感识别算法,从面部图像序列和语音信号中提取表情和语音特征,基于隐马尔可夫模型和多层感知器设计融合表情和语音模态的情感分类器。 实验结果表明,融合表情和语音的情感识别算法在识别样本中的高兴、悲伤、愤怒、厌恶等情感状态时具有较高的准确率。 提出的模态识别算法较好地利用了视频和音频中的情感信息,相比于仅利用语音模态的识别结果有较大的提升,相比于表情模态的识别结果也有一定改进,是一种可以采用的情感识别算法。

    6610

    模型融合推荐算法——从原理到实践

    但是其中一类方法非常特殊,我们称为模型融合算法。融合算法的意思是,将多个推荐算法通过特定的方式组合的方法。融合在推荐系统中扮演着极为重要的作用,本文结合达观数据的实践经验为大家进行系统性的介绍。 常见的模型融合算法 达观数据的众多实践发现,模型融合算法可以比单一模型算法有极为明显的效果提升。但是怎样进行有效的融合,充分发挥各个算法的长处? 这里总结一些常见的融合方法: 1)线性加权融合法 线性加权是最简单易用的融合算法,工程实现非常方便,只需要汇总单一模型的结果,然后按不同算法赋予不同的权重,将多个推荐算法的结果进行加权,即可得到结果: 通过模型进行融合往往效果最好,但实现代价和计算开销也比较大。 达观的多级融合技术 在达观数据(http://datagrand.com)的实践中,采用的多级融合架构如下: ? 往往容易犯的错误是基础算法用的一些词典使用了全部的数据,这会使得融合算法效果大打折扣,因为相当于基础算法已经提前获知了融合算法的测试数据 3)基础算法的区分度越好,融合算法的效果越好,比较不容易出现过拟合

    1.5K70

    模型融合推荐算法在达观数据的运用

    模型融合推荐算法在达观数据的运用 研发背景 互联网时代也是信息爆炸的时代,内容太多,而用户的时间太少,如何选择成了难题。 但是其中一类方法非常特殊,我们称为模型融合算法。融合算法的意思是,将多个推荐算法通过特定的方式组合的方法。融合在推荐系统中扮演着极为重要的作用,本文结合达观数据的实践经验为大家进行系统性的介绍。 常见的模型融合算法 达观数据的众多实践发现,模型融合算法可以比单一模型算法有极为明显的效果提升。但是怎样进行有效的融合,充分发挥各个算法的长处? 这里总结一些常见的融合方法: 1)线性加权融合法 线性加权是最简单易用的融合算法,工程实现非常方便,只需要汇总单一模型的结果,然后按不同算法赋予不同的权重,将多个推荐算法的结果进行加权,即可得到结果: 通过模型进行融合往往效果最好,但实现代价和计算开销也比较大。 达观的多级融合技术 在达观数据(http://datagrand.com)的实践中,采用的多级融合架构如下: ?

    88960

    实现模交互融合的四个阶段

    模交互融合是普适计算和自然交互中最重要的组成部分。笔者认为,实现完整的模交互融合需要分成四个阶段,分别为独立工作阶段、初步融合阶段、语义理解阶段和任务自适应阶段。 02 初步融合阶段 模交互初步融合的关键是找到相同参照物,以参照物为中心实现多个模态之间的信息互通。只要实现模态的焦点对齐,以及模态之间的状态管理,就能初步实现模态融合模交互融合和跨设备/跨任务交互是密切相关的。本质上来讲,模交互融合是从人的角度管理交互的焦点和状态,跨设备/任务交互是从机器的角度管理交互的焦点和状态,所以它们是息息相关的。 由于肢体动作识别、手势识别、表情识别仍处于早期阶段,在初步融合阶段商业产品是不会把它们考虑进去的,所以模交互融合在此阶段更多是基于触控和语言的GUI和VUI融合。 肢体动作、手势和表情的语义理解缺失会让模交互融合缺失了很多可用信息,这是模交互融合的最大瓶颈之一,也导致了当前模交互融合只能在GUI和VUI上研究语义的融合和理解。 ?

    72330

    手机中的计算摄影3-融合

    今天我这篇文章,就来谈一谈“融合”技术,这是除双摄虚化、光学变焦之外,另外一个我很感兴趣的领域。 在真正讲技术前,请允许我回顾一下历史。 流派1遵循严谨的视角几何的方法,认为拍摄同一个目标时,图像和空间物体之间满足对极几何约束的关系,我在文章双摄虚化中也提到了这一点。 融合策略和图像图像融合 当对齐了图像后,就可以对图像进行融合了。在文章11. 图像合成与图像融合中,我介绍了各种各样图像融合的算法。 下面是这个模块给出的融合权重示意图,可以看到图像的不同区域权重是明显不同的 最后展示几个场景的融合结果和融合前的对比: 全图对比: 局部细节: 全图对比: 局部细节: 目前这么一套融合算法 而当计算摄影技术加持的融合能够得到大家的认可时,工程师们也是最开心的! 这篇写作过程中,获得了好些同事的帮助,在此表示感谢。再次感谢美女模特素颜出镜!

    34920

    用于文本聚类的混合源特征融合

    在本文中,我们提出了一个混合源特征融合(HMFF)框架,由模型的特征表示、相互相似性矩阵和特征融合三部分组成,其中我们为每个特征源构建了相互相似性矩阵,并通过降低维度从相互相似性矩阵中融合鉴别性特征 用于文本聚类的混合源特征融合.pdf

    16100

    扫码关注腾讯云开发者

    领取腾讯云代金券