学习
实践
活动
专区
工具
TVP
写文章

参考消息:2015数据发展十预测公布

记者从近日召开的2014中国大数据技术与学术大会获悉,近年来,在各方的共同推动下,我国的大数据产业取得了长足发展,但一些新特点、新现象也层出不穷。 会上发布的《中国大数据技术与产业发展白皮书(2014年)》预测, 2015年我国大数据产业发展将主要有以下十特点。 大数据分析的核心是从数据中获取价值,价值体现在从大数据中获取更准确、更深层次的知识,而非对数据的简单统计分析。 数据科学带动多学科融合,但是数据科学作为新兴的学科,其学科基础问题体系尚不明朗,数据科学自身的发展尚未成体系。在大数据时代,随着社会的数字化程度逐步加深,越来越多的学科在数据层面趋于一致。 三、跨学科领域交叉的数据融合分析与应用将成为今后大数据分析应用发展的重大趋势。大数据技术发展的目标是应用落地,因此大数据研究不能仅仅局限于计算技术本身。

29220

2021年数据Spark():四特点

​​​​​​​ Spark 四特点 Spark 使用Scala语言进行实现,它是一种面向对、函数式编程语言,能够像操作本地集合一样轻松的操作分布式数据集。 速度快 由于Apache Spark支持内存计算,并且通过DAG(有向无环图)执行引擎支持无环数据流,所以官方宣称其在内存中的运算速度要比Hadoop的MapReduce快100倍,在硬盘中要快10倍。 Spark处理数据与MapReduce处理数据相比,有如下两个不同点:  其一、Spark处理数据时,可以将中间处理结果数据存储到内存中;  其、Spark Job调度以DAG方式,并且每个任务Task 2014 年的如此Benchmark测试中,Spark 秒杀Hadoop,在使用十分之一计算资源的情况下,相同数据的排序上,Spark 比Map Reduce快3倍! 对于数据源而言,Spark 支持从HDFS、HBase、Cassandra 及 Kafka 等多种途径获取数据

43430
  • 广告
    关闭

    【限时福利】腾讯云大数据产品,爆品特惠4.5折起!

    移动推送、BI、ES、云数仓Doris、数据湖计算DLC,多款产品助您高效挖掘数据潜力,提升数据生产力!

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    时空地理数据搜寻计划(

    数据是GIS的血液。时空地理数据是我们经常会用到的,很多时候,分析数据可能花不了多长时间,但是收集一些合适的数据总是耗时最多,So,这一次再去搜索GIS时空地理数据,Go! 1.全球气候分区数据[https://geoafrikana.com/resources/] ? 下载过来在Google Earth或者ArcGIS中打开看看 ? ? 3.哈佛地理空间数据集[http://hgl.harvard.edu:8080/opengeoportal/] ? 4.区域地图[https://dataverse.harvard.edu/dataverse/hrs] 提供有shp文件,以及一些社会经济数据 ? ? ? OK,这一期的时空地理数据收集就先到这里了,不论是做历史地理研究,比如分析城区的扩展历史,还是用来观赏,这些地图都具有了研究价值和美学价值,应该是不错的了 最后,感谢大家的分享与转发!

    32310

    数据机遇还是忽悠?

    持反方观点,为技术时代的到来欢呼的,一位是北京大学光华管理学院新媒体营销研究中心副主任苏萌,另一位是日本政治家、内阁成员山本一太。 他提出“一台电脑论”,即科学家们研究所需的数据,最好用一台电脑就能装下,否则数据处理会过于繁琐,无助于解决问题。他结合自身经验说,随着数据量的增大,研究的准确性一开始会随之上升,但很快就会趋平。 这有三个原因:一是因为不同机构间的数据还未真正流动起来,目前还只是数据“孤岛”;是完整的生态产业链还未形成,尽管通过行为数据分析已能够分辨出一个消费者的喜好,但从供应到购买的链条还没建成;三是因为数据分析人才仍然极度匮乏 一位听众挑战正方,说,你们认为大数据过于庞杂纷繁,反而解决不了问题,那是不是说,当处理数据的计算工具变得足够好时,大数据就会变得有用? 正如Howard在发表“失败感言”时所说,“我们并非反对数据,只是反对大而无当的数据数据本身当然非常重要”。人类已经并将继续产生日益庞大的数据,或许不论我们接受与否,大数据时代都已到来。

    65180

    :UBER数据迁徙

    数据迁移的日期定为万圣节(10月31日),而这恰是交通量会非常高的一天。 新的路径存储 第一个设计决定是对路径存储的数据库选择。我们简短的需求列表如下: 操作上稳健(无数据丢失,支持备份,复制到数据中心,便于排除故障,可预测的,业务专长)。 级索引支持。路径根据用户,城市的不同而产生不同的结果。 任何操作都不会死机(扩大的存储,备份,添加索引,添加数据,等等)。 列表的最后一个项目是在解决一个非常直接的痛点。 我们通常通过把MySQL一分为来扩展服务器。 追加(无更新)数据模型:它仅支持一个只追加数据模型中,一旦它被写入后,就不能进行修改。这对于存储交易数据,并希望防止数据损坏的系统是非常有用的。 在真正可以开始迁移之前,第一个任务是从用户身份到用户唯一识别码的迁移,因为原代码依赖于自动递增的PostgreSQL 数据库标识符。几百条SQL查询需要被重写。

    49670

    数据价值机遇大变革

    数据价值机遇大变革 2017-3-26 张子阳 推荐: 1 难度: 1 ? 这本书就像一个印刷出来的PPT,字体比较大,留白比较多,大量图片,全彩印刷。 概括起来有下面这些要点: 数据量正指数级别增长。大数据时代已经来临。 大数据特点:存储量大、计算量大、增长速度快、类型多样化。 制造业应用:给挖掘机安装GPS和数据上传系统,统计挖掘机每月的工作时长。然后根据大量用户的实际使用数据,来判断市场是否有过剩的风险。 银行业应用:反诈骗系统。 数据仓库(Data Warehouse)是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管理决策。 相对稳定:数据一旦进入数据仓库以后,一般很少进行修改,更多地是对信息进行查询操作。 反映历史变化:不只是反映企业当前的状态,而是记录了过去某一点到当前各个阶段的信息。

    29140

    【MySQL性能优化】数据库三范式()

    欢迎访问原文: 【MySQL性能优化】数据库三范式() 数据库设计无非遵循的就是减少冗余量,第点就是遵循三范式 第一范式(1NF) 确保每一列的原子性 也就是如果每一列都满足是不可再分的最小数据单元 加入是电商项目,需要分地区等等收货地址,在这里就可以再分细一些 第范式(2NF) 主要是保证唯一 如果一个关系满足一范式,并且除了主键以外的其他列,都依赖于该主键,则满足第范式。 通俗来讲,就是每一个表有且仅有一个主关键字,其他数据与主关键字一一对应。注意,这里的主关键字肯定是主键,但是主键不一定是主关键字。 参考百度百科:第范式 一般订单表中,我们都不会用id来作为订单号 如果需要订单号,我们就要建一个orderid列 这样也是为了安全性着想。 但是却有大量的数据冗余,有关学生的所在系 系名称 系地址。

    23710

    2016数据发展7趋势

    关于转载授权 大数据文摘作品,欢迎个人转发朋友圈,自媒体、媒体、机构转载务必申请授权,后台留言“机构名称+文章标题+转载”,申请过授权的不必再次申请,只要按约定转载即可,但文末需放置大数据文摘维码。 大数据已过时,算法正当道。数据已经成为一种商品,每个组织都能够收集和存储大量的数据。分析大数据也不再那么引人注目了。每个组织都可以聘用或培训大数据分析人员来了解数据模式。 由于数据湖带来了相当多的挑战,在2016年,我们将看到数据湖管理的未来:数据湖服务作为一种解决方案,为您的数据湖提供一个完整的管理方案。 因此,高级管理人员正在寻找其人力资源的确切数据,所以,2016年我们会看到人力资源分析将迈出一步。 人力资源分析虽然是人事部门新的业务领域,但为了更好地提高人力资源的投资回报率,该业务增长极为迅速。 对于那些的商业组织而言,大数据已经成为通用语言。在适应新趋势方面,政府是缓慢的,但是在2016年,我们会看到更多的国家、地区和地方政府会采用大数据技术来提高社会和公民的体验。

    25160

    数据结构总结!

    说到算法,就不能不说起数据结构。今天我来讲一讲,什么是数据结构?程序员怎么学好数据结构? 我们介绍算法的时候说过,计算机当中的算法,本质就是一系列程序指令,用以解决特定的运算和逻辑问题。 而所谓数据结构,是数据的组织、管理和存储格式。简单理解的话,数据结构就是执行算法的“原材料”。 俗话讲,巧妇难为无米之炊。算法,就好比是聪明勤劳的女主人,而数据结构,就是用来做饭做菜的柴米油盐。 数据结构都有哪些组成方式呢? 首先,是线性结构。 但凡有过一点编程基础的小伙伴,肯定都知道数组,这就是一种典型的线性数据结构。 除了数组以外,链表也是一种重要的数据结构。 它的底层实现就是一种名为红黑树的特殊叉树。 另外,我们操作系统当中的文件索引,有很多都是用B树实现的。 而我们常用的MySQL数据库,以B+树作为常用索引。 再其次,是图。 Redis当中的集合 sortedSet,背后的数据结构就是跳表。 复合数据结构,往往结合了多种基础数据结构当然优势,在特定的场景下非常有用。

    19641

    2016数据版图

    本文全面总结了大数据领域的发展态势,分析认为尽管大数据作为一个术语似乎已经过气,但是大数据分析与应用才刚刚开始兴起,在与 AI、人工智能等新兴技术的结合下,大数据的机会也许要比大家想象的还要。 后来随着开源运动的迅速发展,一批此类新技术开始共享到更广的范围。然后,一些互联网大公司的工程师离职去创办自己的大数据初创企业。 企业对由年轻的初创企业来处理自己基础设施的关键部分的谨慎是可以理解的。还有,令创业者感到绝望的是,许多(还是大多数?)企业仍顽固地拒绝把数据迁移到云端(至少不愿迁移到公有云)。 大数据与 AI 的结合将会推动很多行业的惊人创新。从这个角度来说,大数据的机会也许要比大家想象的还要。 附注: 1)由于不可能把大数据的所有公司都列到图表上,所以我们只能按照一定原则筛选部分公司出来,筛选原则一是进行过 1 轮或多轮 VC 融资的初创企业,是把一些我们特别感兴趣的较早期初创企业列进去。

    32640

    数据为什么

    但如果听数据砖家讲,那就是真的,不但,还金贵! 因为从海量的数据中挖掘信息,就跟淘金差不多。 ? 因此人们给数据从业者起了上面那些亲切的名字。虽然这个行业薪水可观,但工作确实玩命! 同时也体现了大数据行业一直以来都存在的痛点。 数据的采集抓取; 数据的存储管理; 数据的分析处理; 如何做好以上几个环节的工作,是目前大数据分析行业一直存在的难题。 这其实不是数据的问题,而是处理数据的设备问题! 很多数据分析公司都疏忽了服务器的重要性,一些老牌数据公司甚至还在使用手服务器做为数据载体。 这也是为什么很多重要数据总是容易泄露或丢失的原因。 ? 对于那些使用劣质服务器工作的数据分析尸们来说,每一次数据采集、抓取都是一场人与机器的博弈。 更像是一场拉锯战! 技术创新所驱动的新硬件时代已经来到,它将为数据的未来探索保驾护航!更重要的是卓越的硬件会让数据从业者不再烦恼,真正让有价值的数据在未来跑起来,助力我们的未来智能生活!

    35920

    2021年数据基础():​​​​​​​​​​​​​​大数据的特点(5v)

    ---- 大数据的特点(5v) 大数据的特点可以使用5个字来概括:、多、值、快、信 一、Volume:  数据的采集,计算,存储量都非常的庞大。是数据体量巨大(Volume)。 当前,典型个人计算机硬盘的容量为TB量级,而一些企业的数据量已经接近EB量级。 、Variety: 多 种类和来源多样化。 种类有:结构化、半结构化和非结构化数据等,常见的来源有:网络日志、音频、视频、图片等等。 三、Value: 值 大数据价值密度相对较低。 而如何通过强大的机器算法更迅速地完成数据的价值提炼,是大数据时代亟待解决的难题。 四、Velocity: 快 数据增长速度快,处理速度也快,获取数据的速度也要快。 这是大数据区分于传统数据挖掘的最显著特征。根据IDC的“数字宇宙”的报告,到2020年,全球数据使用量将达到35.2ZB。在如此海量的数据面前,处理数据的效率就是企业的生命。

    47510

    回顾2016年数据发展,盘点十热门数据岗位

    随着很多大公司对数据分析需求增多,数据相关岗位的人才需求量也越来越大。 数据学作为一门学科,已经受到时代的追捧。 2016年的尾声即将到来,我们是时候回顾一下大数据的发展,盘点十最热门的数据岗位。 ? TOP1 首席数据官(CDO) 三军不可无帅也,所有想在大数据项目中取得成功的公司都需要首席数据官坐镇指挥。 首席数据官的工作内容非常多,职责也很复杂,他们负责公司的数据框架搭建、数据管理、数据安全保证、商务智能管理、数据洞察和高级分析。 TOP7 大数据工程师 正如上文提到过的,数据工程师的工作是负责管理公司的数据,包括数据的收集,存储、处理和分析。从经验来看,这涉及到使用关系型数据库,来管理以表格方式存储的数据。 大数据工程师需要能够搭建并维护大型异构数据框架,这些数据通常是在MongoDB等NoSQL数据库中。

    67060

    数据科学】教你成为数据科学“咖”!

    一、利用互联网成为“咖” 随着互联网的迅猛发展,网络公开课的网站和APP等日益成熟,从听课、讨论到考试,一条龙的自学服务已经颇成规模。 、学习数据科学的动力 现在数据科学家岗位面临极大的缺口。所谓数据科学家,就是同时掌握统计学 知识与程序设计技巧,能够服务大数据开发的技术专家。成为一名数据科学家,就有了大数据时代互联网行业的通行证。 四、从这里开始:数据科学的课程表 这些数据科学的开源课程,从数学、编程等几个方面塑造数据科学“咖”。这不是为了重温大学课程,而是以问题导向准备知识。 (6)进阶 对于立志成为数据科学“咖”的人,推荐继续阅读《Doing Data Science: Straight Talk from the Frontline》一书。 Capstone Analysis of Your Own Design; Quora’s Idea Compendium》和华盛顿大学的《Healthcare Twitter Analysis》,则能够在打开 “

    47040

    2021年数据Flink():Flink用武之地

    /www.liaojiayi.com/flink-IoT/ https://flink.apache.org/zh/usecases.html 从很多公司的应用案例发现,其实Flink主要用在如下三场景 】 数据分析任务需要从原始数据中提取有价值的信息和指标。 提取-转换-加载(ETL)是一种在存储系统之间进行数据转换和迁移的常用方法。 ETL 作业通常会周期性地触发,将数据从事务型数据库拷贝到分析型数据库或数据仓库。 Data Pipeline:比如启动一个Flink 实时应用,数据源(比如数据库、Kafka)中的数据不断的通过Flink Data Pipeline流入或者追加到数据仓库(数据库或者文件系统),或者Kafka 这个过程会进行实时清洗或扩展数据,清洗完成后写入到下游的实时数仓的整个链路中,可保证数据查询的时效性,形成实时数据采集、实时数据处理以及下游的实时Query。

    26750

    关注

    腾讯云开发者公众号
    10元无门槛代金券
    洞察腾讯核心技术
    剖析业界实践案例
    腾讯云开发者公众号二维码

    相关产品

    • 腾讯云图数据可视化

      腾讯云图数据可视化

      腾讯云图 (TCV)是一站式数据可视化展示平台,旨在帮助用户快速通过可视化图表展示海量数据,10 分钟零门槛打造出专业大屏数据展示。精心预设多种行业模板,极致展示数据魅力。采用拖拽式自由布局,无需编码,全图形化编辑,快速可视化制作……

    相关资讯

    热门标签

    活动推荐

    扫码关注腾讯云开发者

    领取腾讯云代金券