基于层次的聚类方法 概念 : 将数 据集样本对象 排列成 树结构 , 称为 聚类树 , 在指定的层次 ( 步骤 ) 上切割数据集样本 , 切割后时刻的 聚类分组 就是 聚类算法的 聚类结果 ;
2 ....划分层次聚类 ( 根节点到叶子节点 ) : 开始时 , 整个数据集的样本在一个总的聚类中 , 然后根据样本之间的相似性 , 不停的切割 , 直到完成要求的聚类操作 ;
5 ....\{d\}
和
\{e\}
两个聚类 ;
⑤ 第四步 : 分析相似度 , 将
\{a ,b\}
拆分成
\{a\}
和
\{b\}
两个聚类 , 至此所有的数据对象都划分成了单独的聚类...基于密度的聚类方法 算法优点 :
① 排除干扰 : 过滤噪音数据 , 即密度很小 , 样本分布稀疏的数据 ;
② 增加聚类模式复杂度 : 聚类算法可以识别任意形状的分布模式 , 如上图左侧的聚类分组模式...基于方格的方法优点 : 处理速度很快 , 将每个方格都作为一个数据 , 如果分成 少数的几个方格进行聚类操作 , 聚类瞬间完成 ; 其速度与数据集样本个数无关 , 与划分的数据方格个数有关 ;
3 .