展开

关键词

信贷模型搭建及核心模式分类

目前,对于信贷审核来说主要基于的模式为IPC、信贷工厂、大数据三种,每一种都有自己不同的侧重点。 在我们清洗数据的时候,看到对客户信用评价中有这么一类“少量逾期”,这个类别占了相当的比重,而且在模型中作用也比较显著,和其它类别“信用好”“信用差”等比肩。 从资金的角度来看,模型是为了评估用户还款能力和还款意愿,反欺诈反作弊,防止用户薅羊毛和保证平台安全等功能;从行业的角度,互联网模型体现在消费金融/供应链金融/信用借贷/P2P/大数据征信等方面。 五、模型的设计步骤 总体来说模型的设计主要可以分为以下的几个步骤: 1.获取数据 信用评估来自于用户数据,模型规则其实就是用户数据规则,信息的纬度也比较广泛,大致可以分为基本信息/行为信息 ,一般来说活体检测是能够过滤到一部分恶意欺诈人群的。

6410

3句话总结信贷的特征

信贷数据挖掘算法最成功的业务场景,简单来说就是判断一个人的还款能力及还款意愿,并以此为信任依据提高金融业务效率。 业界通常的做法是基于挖掘多维度的特征建立一套规则及模型,一个好的特征,对于模型和规则都是至关重要的,验证中经常可以发现,如果踢掉某类特征模型也就废了。 本文就梳理总结下信贷常用的特征,可以总结到以下3句话: 1、信贷历史类: 信贷交易次数及额度、查询征信次数、信贷历史长度、新开信贷账户数、额度使用率、逾期次数及额度、信贷产品类型、被追偿信息。 (信贷交易类的特征重要程度往往是最高的,少了这部分历史还款能力及意愿的信息,模型通常直接就废了。) 2、基本资料与交易记录类:年龄、婚姻状况、学历、工作类型及经验、工资收入、存款AUM、公积金及缴税、非信贷交易流水等记录 (基本资料主要是从还款能力上面考量,需要注意的是,还需要多方核验资料的真伪以鉴别欺诈风险

4910
  • 广告
    关闭

    腾讯云图限时特惠0.99元起

    腾讯云图是一站式数据可视化展示平台,旨在帮助用户快速通过可视化图表展示大量数据,低门槛快速打造出专业大屏数据展示。新用户0.99元起,轻松搞定数据可视化

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python信贷模型:Adaboost,XGBoost,SGD, SVC,随机森林, KNN预测信贷违约支付|数据分享

    p=26184 在此数据集(查看文末了解数据获取方式)中,我们必须预测信贷的违约支付,并找出哪些变量是违约支付的最强预测因子?以及不同人口统计学变量的类别,拖欠还款的概率如何变化? 如果将模型拟合到训练数据集上,则将隐式地最小化误差。拟合模型为训练数据集提供了良好的预测。然后,您可以在测试数据集上测试模型。如果模型在测试数据集上也预测良好,则您将更有信心。 因此,通过将数据集划分为训练和测试子集,我们可以有效地测量训练后的模型,因为它以前从未看到过测试数据,因此可以防止过度拟合。 我只是将数据集拆分为20%的测试数据,其余80%将用于训练模型。 数据获取 在下面公众号后台回复“信贷数据”,可获取完整数据。 本文摘选《Python信贷模型:Adaboost,XGBoost,SGD, GBOOST, SVC,随机森林, KNN预测信贷违约支付》。

    22930

    2017年数据报告

    传统消费信贷市场是一单一单去做,尽管消费信贷定价较高,但商业银行运营和作业成本太大。金融科技下的批量化获客、作业有效降低了成本。 二是通过大数据、云计算等手段,在风险防范、风险管方面实现了线上化和批量化。 其中,大数据技术解决了消费金融乃至小微金融领域的效率瓶颈。 目前,有能力推动大数据的主要为国有大行、股份制银行等大型银行,以及部分城商行等。互联网巨头、三运营商等由于掌握了庞大的个人数据,也开始加入到这一市场中来。 “白名单”主动预授信 在消费金融中,银行、互联网金融等机构开始采用前置的白名单邀请制,商业银行将主动授信用于实际业务,这是对以往被动授信模式的颠覆。 就国内商业银行而言,将风险评分等技术手段引入信用贷款模型,是一些银行信用贷款业务爆发、不良下降的核心原因。

    80700

    银行零售信贷就这么干!

    封面.jpg 在研讨会上,众多主管部门领导、银行业大咖和来自腾讯的金融专家等共同围绕商业银行数字化转型趋势、零售信贷难题等行业热点话题展开深入讨论。 针对银行零售信贷需求,腾讯云天御基于20余年的安全攻防实战经验联合腾梭科技打造了腾讯云天御-星云零售信贷中台。 杨竑 | 银行零售信贷数字化转型安全是压舱石 1.jpg 中国金融学会金融科技专业委员会秘书长兼副主任委员杨竑表示,金融行业的一特点在于对数据安全和信息保护有着严格的监管要求,数据安全应该成为银行数字化转型过程中格外关注的侧重点 平台的优势是可以输出交换数据,但如何定义安全边界,划分所有参与者的安全责任,是非常的挑战。 曾刚 | 银行业务向线上迁移,将带来模式的革新 5.jpg 国家金融与发展实验室副主任、上海金融与发展实验室主任曾刚剖析,银行数字化转型有五重点:一是企业文化的革新,由传统银行自上而下式的文化,转向以客户为中心快速迭代的数字经济文化

    29140

    概述:机器学习和大数据技术在信贷场景中的应用

    来源:知乎本文约5400字,建议阅读10分钟本文简要概述在当前大数据和机器学习技术如何在信贷场景下的常见应用。 于是天作佳成,正如目前我们看到的,信贷成为当前机器学习和大数据技术最适合也是最成熟的应用场景之一: 1.金融业务自身需要大量的数据且也会产生更多的数据,这天然的让信贷成为最适合大数据和机器学习的场景 ; 2.涉及的数据量大、数据面广、关联复杂,也急需利用大数据和机器学习技术解决过程中效率低、缺乏公平准则、风险难以量化的问题; 所以正是因为这样的相互依赖,信贷成为当前大数据和机器学习技术应用最成熟的领域之一 信贷中的主要问题 信贷最关键的目标就是从全量申请用户样本中找到会逾期的客户,所以的核心目的是评估用户的还款意愿和还款能力。 基于大数据的机器学习并不是完全改变传统,实际是丰富传统数据纬度和量化风险的方式。 结语 本文简单介绍了大数据和机器学习在信贷领域的应用场景。

    7920

    如何量化样本偏差对信贷模型的影响?

    信贷业务的核心,业务实践中经常会出现样本选择性偏差(sample bias),从而影响模型效果,影响信贷业务。而很多风模型也都只能基于有偏样本建立。 信贷业务中的模型术语 3. 拒绝推断方法概述 4. 仿真实验设计评价 5. 总结 信贷业务中的样本偏差来源 01 信贷业务大致分为营销获客、贷前授信、贷中动支等几个环节。 图 2 - 一次与二次业务场景 信贷业务中的模型术语 02 为提高自动化审批效率,我们在业务实践中大量借助模型来对客户排序、筛选、分群,并对不同人群制定不同的策略。 大数据的套路都大同小异,贵在精细化运营。 模型并不神秘,其本质是从历史样本中拟合输入和输出之间的关系,并将该规律应用于新输入的预测。 在真实业务中,除了二次外,在贷前授信环节我们确实没有Y数据。此时可以通过阈值外的间谍样本(spy)进行评估效果。 ?

    69330

    洞察|把社交大数据作个人信贷评估“靠谱”吗?

    那么,对于普通投资者来说,社交大数据的运用能为个人的金融生活带来哪些改变呢?又有哪些隐藏的风险值得注意?本期投资有道请来了三位金融咖为大家解答。 1、把社交数据用作个人信贷评估“靠谱”吗? 蒋燕青:信贷主要是防范两类风险,即信用风险和欺诈风险,目前业内对于社交数据的应用主要在反欺诈方面。 当然,社交数据只是一个维度,还需要结合其他诸如消费能力、征信状况、收入等其他维度,才能形成完整的、较强的体系。 2、大数据的运用还将如何改善人们的金融生活? 董希淼:现在大数据已被广泛运用,例如微众银行已经开始把个人用户在微信平台上的社交数据纳入体系,并成功发放贷款。 蒋燕青:大数据水平的提高,避免了传统贷款模式中需要准备工资证明、工作证明、房产证明等资料的繁琐过程,同时,大量的数据通过引擎可以快速地完成处理,用户能在较短的时间内获知审批结果,拿到贷款,这让个人信贷产品的体验更佳

    65080

    腾讯安全发布信贷成果:已助力银行放款超千亿

    从ATM、网上银行自助式服务到移动支付、互联网金融,金融科技的深化应用与普及,使得越来越多的金融机构加速拥抱信贷数字化转型。 随着实物抵押向“动动手指”就能贷到款的转变,一个兼具广域获客和高效的数字化信贷方案成为各金融机构共同的诉求。 头条头图.jpg 自2018年以来,腾讯安全不断深入金融业务场景,推出打造了一套行之有效的零售信贷数字化解决方案——腾讯安全星云零售信贷中台,为银行零售信贷获客、、运营、管理等全流程业务场景提供了高效 当获客与成为信贷数字化的两大关键词,腾讯安全是如何依托腾讯“星云”助力金融行业补齐技术短板?包括中国银行、华夏银行等在内的信贷数字化领跑者,又是基于什么选择了腾讯“星云”? 在助力构筑高效、安全的数字化信贷新体系过程中,腾讯“星云”又取得了哪些成果? 星云成绩单.png

    24020

    数据体系-简介

    早期传统金融的主要利用了信用属性强大的金融数据,一般采用20个维度左右的数据,利用评分来识别客户的还款能力和还款意愿。 结合中国互联网发展,以及目前的征信监管要求,对可用数据及可用数据做一个全面的梳理。 2.数据来源 2.1 数据应用逻辑 常见流程中,客户准入时提供的资信材料有限,业务机构数据体量不足,仅仅根据内部风险数据进行风险评估会非常片面,无法全面的把某位客户的风险情况,所以通常需要依赖于第三方供应商提供数据作风支撑 未来百行能不能有效被使用上还有待观察,但人员可先了解其相关的资料。百行征信涉及的模块,主要包括以下方面: 报告相关数据:报告时间;查询原因;查询结果等。 4.2 明确需求 建议:回顾第二节数据应用逻辑关于业务类型、风险类型、流程、风险画像等的介绍。

    1.5K64

    中的大数据

    的意义 何为?字面含义就是对于风险的控制从而使财务不受到损失。对于任何一家金融机构(包括银行,小贷,P2P等)来说,的重要性超过流量、体验、品牌这些人们熟悉的指标。 做得好与坏直接决定了一家公司的生与死,而且其试错成本是无穷的,往往一旦发现出了问题的时候就已经无法挽回了。截止到2015年底,全国总共3000多家P2P平台里超过三分之一已经倒闭。 ◆◆◆ 4.机构在大数据领域的探索 我们所说的"大数据"并非指绝对的样本量的巨大,而是把常规的信贷征信数据以外的信息统一称为"大数据"。 目前看来,由于美国的征信生态体系已经比较完善,其它非信贷数据建模里的应用实际上比较有限,在大多数情况下锦上添花多过雪中送炭。 大数据的挑战 伴随着机遇同样也有挑战。就像要有美味的菜肴,我们既需要好的材料,也需要好的厨师,当前大数据中运用的挑战主要还是在数据和人才这两方面。

    1K120

    2018中国大数据调研报告:百亿大数据市场

    22520

    产业安全专家谈 | 疫情期间,银行“零接触”信贷如何做好业务

    线上信贷具备哪些优势和挑战?银行如何才能做好线上信贷的业务,提升效率、持续获客? 互联网信贷更多的使用互联网大数据来做,大大提升了征信数据的覆盖率,可以对更大范围的客户进行风险评估,包括人行征信记录薄弱的客户也能参与信贷,真正推动了信贷业务的普惠进程。 Q4:疫情之下,很多银行都开始推行线上信贷服务,除了做好大数据之外,银行还能通过哪些方式提升信贷业务效率? 李超:效率在线上信贷业务里十分关键,因为线上业务最大的优势就是效率和体验的提升。 第二是决策自动化,通过数据网关,智能决策引擎和风险屏,提升能力建设的效率,迭代的效率,以及风险感知预警的效率。 李超:说到稳定,大家第一反应是,说到增长,大家很自然的会想到营销,然而,在信贷业务里,最终还是能力的比拼。

    39141

    机器学习与大数据

    国内商业银行模型团队多年管理经验,专注于大数据机器学习、信贷风险策略、模型评分管理等领域。从事大数据分析和信贷风险管理近十年,在金融行业的数据分析、平台架构、模型研究和风险策略等方面有深刻的理解。 郑宏洲:我们知道,信贷管理业务中的重要组成部分。按形式,可以分为传统人工和量化。 大数据是量化的一种新形式,出现主要的条件是,现代社会是一个信息社会,在信息和数据上极大的膨胀,这给我们有更全面衡量个体风险的机会。 大数据,这是依托于海量的数据去判断借款人的信贷风险,这就决定了它比传统方法更依赖于技术方法去处理,同时大数据时常伴随着高维度稀疏性等特点,这决定了机器学习是实现这一场景的核心方法。 区别于传统技术,大数据是在方法论上做了相应的革新。风险,即不确定性。风险管理实际上就是做量化风险。大数据是将贷款主体各个方面的属性维度做全面风险的量化。

    1.1K80

    产业安全专家谈丨中小银行如何发展信贷业务的同时做好

    对于银行来说建设自主能力相对容易,他们不缺用户,不缺数据,有足够的空间和时间推新产品、小步快跑做实验,模型先跑起来,慢慢完善,自主能力就算有了。 3、如何看待在中小型银行信贷业务中的重要性? 李超:不止是中小银行信贷业务,在所有的信贷业务,尤其是线上的互联网信贷业务领域中,都是最关键的环节。这里我们从两个层面来解读。 一旦出现了一点点漏洞,很有可能就会面临着黑产大范围的批量攻击,不止带来巨大的资金损失,逾期率破表也会令业务面临非常的监管压力。 因中小型银行业务体量有限,难以形成完整的大数据反欺诈能力,像信息核验、信息伪冒、团伙欺诈的等反欺诈核心痛点,对数据网络和计算能力的依赖度,中小行短期内更建议借助外部能力。 2. 第三类是整体解决方案,主要针对,交易,消费信贷,小微企业贷等场景,提供端到端的整体服务,在协助银行构建体系化信贷系统之外,我们还会派驻专家和银行的人员一起来搭建优化这个系统的策略体系,把业务跑顺做大

    37910

    相关产品

    • 营销风控

      营销风控

      食品、饮料、酒类、日化等快消厂商的一物一码营销活动中,黑产会利用大量的小号、僵尸号码、甚至批量自动工具参与活动,给厂商造成损失。营销风控服务(Marketing Risk Management,MRM)通过独有的腾讯安全风控模型和 AI 关联算法,帮助您快速识别恶意请求,精准打击“羊毛党”,提升资金使用效率,还原数据真实性。

    相关资讯

    热门标签

    活动推荐

    扫码关注腾讯云开发者

    领取腾讯云代金券