学习
实践
活动
工具
TVP
写文章

2017年数据报告

二是通过大数据、云计算等手段,在风险防范、风险管方面实现了线上化和批量化。 其中,大数据技术解决了消费金融乃至小微金融领域的效率瓶颈。 目前,有能力推动大数据的主要为国有大行、股份制银行等大型银行,以及部分城商行等。互联网巨头、三运营商等由于掌握了庞大的个人数据,也开始加入到这一市场中来。 根据媒体报道,监管当局已决定由互金协会牵头成立个人信用信息平台,于今年底正式批筹,坊间将之称为“信联”。 风险识别与控制既是金融业运营的核心,也是大数据在国内外金融领域最主要的应用部分。 “白名单”主动预授信 在消费金融中,银行、互联网金融等机构开始采用前置的白名单邀请制,商业银行将主动授信用于实际业务,这是对以往被动授信模式的颠覆。 就国内商业银行而言,将风险评分等技术手段引入信用贷款模型,是一些银行信用贷款业务爆发、不良下降的核心原因。

83500

数据体系-简介

早期传统金融的主要利用了信用属性强大的金融数据,一般采用20个维度左右的数据,利用评分来识别客户的还款能力和还款意愿。 结合中国互联网发展,以及目前的征信监管要求,对可用数据及可用数据做一个全面的梳理。 2.数据来源 2.1 数据应用逻辑 常见流程中,客户准入时提供的资信材料有限,业务机构数据体量不足,仅仅根据内部风险数据进行风险评估会非常片面,无法全面的把某位客户的风险情况,所以通常需要依赖于第三方供应商提供数据作风支撑 未来百行能不能有效被使用上还有待观察,但人员可先了解其相关的资料。百行征信涉及的模块,主要包括以下方面: 报告相关数据:报告时间;查询原因;查询结果等。 4.2 明确需求 建议:回顾第二节数据应用逻辑关于业务类型、风险类型、流程、风险画像等的介绍。

1.7K64
  • 广告
    关闭

    热门业务场景教学

    个人网站、项目部署、开发环境、游戏服务器、图床、渲染训练等免费搭建教程,多款云服务器20元起。

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    中的大数据

    的意义 何为?字面含义就是对于风险的控制从而使财务不受到损失。对于任何一家金融机构(包括银行,小贷,P2P等)来说,的重要性超过流量、体验、品牌这些人们熟悉的指标。 做得好与坏直接决定了一家公司的生与死,而且其试错成本是无穷的,往往一旦发现出了问题的时候就已经无法挽回了。截止到2015年底,全国总共3000多家P2P平台里超过三分之一已经倒闭。 这其中除了一部分明显的自融欺诈外,大多数平台垮掉的原因还是不过关。 ◆◆◆ 2. 的核心 风险控制需要做什么?与逾期率的绝对数值相比,对风险的控制能力要重要得多。 国际上传统的方法 的核心是要准确预测每一笔借款违约概率。显而易见,这需要量化的工具,也就是模型。 大数据的挑战 伴随着机遇同样也有挑战。就像要有美味的菜肴,我们既需要好的材料,也需要好的厨师,当前大数据中运用的挑战主要还是在数据和人才这两方面。

    1K120

    金融科技&大数据产品推荐:易鑫大数据平台

    易鑫大数据平台综合了机器学习、网络爬虫、指标体系、规则引擎、图数据库、流式计算等核心技术,整合线上线下多维度数据,可支持反欺诈、信用评分、贷前审批、贷中监控、贷后追踪等全方位的金融场景。 的产品投递 1、产品名称 易鑫大数据平台 2、所属分类 消费金融 金融科技·、征信、反欺诈、大数据安全 3、产品介绍 易鑫大数据平台综合了机器学习、网络爬虫、指标体系、规则引擎、图数据库、 应用场景1:贷款在线审批 智能平台基于大数据进行实时数据收集、数据分析,并进行一系列规则计算、评分建模与智能决策,实现前置,帮助客户达到“秒级放贷”。 5、产品功能 易鑫平台主要功能如下: 第一,指标体系; 平台所需要的多维度海量数据通过指标体系进行采集。 成立三年多来,易鑫集团发展突飞猛进,目前,已完成智能数据控管理、资产管理三中心的核心布局。2016年,易鑫平台的交易量超过26万台,总交易规模超过270亿元。

    1.3K120

    2018中国大数据调研报告:百亿大数据市场

    23920

    机器学习与大数据

    但机器学习在中的作用究竟如何,有哪些关键技术,其优势与缺点又有哪些呢?本期硬创公开课,雷锋网邀请百融金服风险总监郑宏洲,来讲讲机器学习与大数据的那些事。 嘉宾介绍: 郑宏洲,百融金服风险总监。 国内商业银行模型团队多年管理经验,专注于大数据机器学习、信贷风险策略、模型评分管理等领域。从事大数据分析和信贷风险管理近十年,在金融行业的数据分析、平台架构、模型研究和风险策略等方面有深刻的理解。 大数据是量化的一种新形式,出现主要的条件是,现代社会是一个信息社会,在信息和数据上极大的膨胀,这给我们有更全面衡量个体风险的机会。 区别于传统技术,大数据是在方法论上做了相应的革新。风险,即不确定性。风险管理实际上就是做量化风险。大数据是将贷款主体各个方面的属性维度做全面风险的量化。 开发了百融100brain机器学习平台,它是一个分布式的纯R平台,在这个平台上做机器学习知识的传承和分享。我们内部还举办了各种技术大赛,去验证传统统计方法和机器学习方法的效果优劣。

    1.2K80

    【金融数据】消费金融:大数据那点事?

    数据同传统在本质上没有区别,主要区别在于模型数据输入的纬度和数据关联性分析。 大数据作为传统方式补充,主要利用行为数据来实施风险控制,用户行为数据可以作为另外的30%客户的有效补充。 风险评估过程中,如果数据纬度不全,高相关数据没有被考虑进来,对模型是一个的风险。信用风险评估模型缺少了重要风险因素的输入,其评估结果的偏离度就会较大,评估结果失效的可能性就很大。 大数据可以从数据纬度和分析角度提升传统水平,是一个必要的补充,可以让传统更加科学严谨,但是不是取代传统的模型和数据。 第二种是利用共享贷款数据机制,第三方企业或者的P2P,防欺诈联盟共享贷款平台的贷款记录。其他贷款平台可以依据申请人在其他平台的贷款记录来决定是否提供贷款,降低欺诈风险。

    1.6K51

    数据模型是什么?有哪些?

    摘要:在互联网金融行业,不少人可能这样觉得:认为只要数据够“”,就能有最牛逼的体系和行业最低的坏账率。 在互联网金融行业,不少人可能这样觉得:认为只要数据够“”,就能有最牛逼的体系和行业最低的坏账率。这种理解有些过于简单了。 其实,做大数据是一个挺细致的事儿,大数据,重要的不是数据本身,而是对数据的理解。 大数据模型是什么 指标体系 大数据圈流行一句话:数据决定了数据分析的上限,而模型做的是逼近这个上限。 模型 大数据更多应用与小微互金贷款,因此更多是还款意愿的控制,欺诈风险会比较高,因此构建好的反欺诈模型就非常重要,目前一般分三种: 1.

    13220

    中必做的数据分析

    数据领域就没有不做数据分析的,大数据也不例外。 我的观点是和其他互联网业务都是互通的,本文介绍下风中必做的数据分析,用以说明数据分析是一通百通的。 工欲善其事,必先利其器。 数据分析平台,开源的有metabase,收费的有tableau,都可以连接数据库实时交互,并提供丰富的智能仪表盘。 01 业务理解 如果一家金融机构聘请你给他们的业务做咨询,你知道怎么办吗? 别告诉我,你想硬搬建模比赛的那套东西。不要掉价。 解决方案一定是针对当前业务和用户客群独家定制的。 vintage分析把不同期的样本放在了一起,可以用来观察不同期客群风险的变化,然后确定是流量本身的变化,还是宏观形形势的变化,还是策略的变化等等。 如大家所见,在领域所在的数据分析,应该和其他互联网领域的数分并无本质区别。 因为和其他业务一样,本质都是用户生命周期管理。基于相同的底层逻辑,数据分析必然也并无二致。

    31730

    中的大数据和机器学习

    本篇文章只关注个人信用借款的。抵押贷,企业贷不在讨论范围中。 ◆ ◆ ◆ 1. 的意义 何为?字面含义就是对于风险的控制从而使财务不受到损失。 做得好与坏直接决定了一家公司的生与死,而且其试错成本是无穷的,往往一旦发现出了问题的时候就已经无法挽回了。截止到2015年底,全国总共3000多家P2P平台里超过三分之一已经倒闭。 这其中除了一部分明显的自融欺诈外,大多数平台垮掉的原因还是不过关。 ◆ ◆ ◆ 2. 的核心 风险控制需要做什么?与逾期率的绝对数值相比,对风险的控制能力要重要得多。 大数据的挑战 伴随着机遇同样也有挑战。就像要有美味的菜肴,我们既需要好的材料,也需要好的厨师,当前大数据中运用的挑战主要还是在数据和人才这两方面。 在数据领域有着扎实的理论基础和丰富的实战经验。 拍拍贷 拍拍贷成立于2007年6月,总部位于上海,是国内首家P2P纯信用无担保网络借贷平台

    53530

    互联网金融中的数据科学

    传统都是使用一些基于规则的手段。线上随着用户量和数据量越来越大,我们会使用一些数据科学技术进行线上反欺诈中规则的提取或智能欺诈风险发现。 但在国内没有权威的征信机构来提供这些数据,对于互联网金融公司来说,收集这样的数据难度非常。而且传统评分卡的有效特征挖掘非常困难。 欺诈风险:欺诈风险包含了伪冒申请和欺诈交易。 建模中的数据科学 ? 在整个中,它是一个标准的机器学习流程。除了样本和数据与普通互联网机器学习不一样之外,其它基本都是一致的。 应用于规则、反欺诈服务和实时欺诈监控。数据在采集、传输、存储时能达到99.999%的可靠性。基于实时数据采集平台和图数据库,可实时捕捉风险特征,控制欺诈风险。 FinGraph是线上风险统中关键的一环 ? 总结:数据科学在互联网金融中发扬 图挖掘技术可以把风工作,从局部考量提升到全局考量。

    1.3K50

    电商社交数据在大数据的应用实践

    投稿来自卧龙大数据(公众号:DataWoLong) 大数据文摘欢迎各类优质稿件 请联系tougao@bigdatadigest.cn 随着普惠金融业务的深入,以及消费金融业务竞争的白热化,针对信用白户的显得尤为重要 如何面向信用白户进行快速有效的信用评级,卧龙大数据根据自己的实践经验,就电商、社交数据上的应用价值与大家进行一些分享。 数据匹配率可以达到50%及以上,具有较大的大数据分析潜力。 实名制的普及带来的是号码资源稀缺,最大化价值利用是黑产平台的主要特点,这也给我们基于大数据的反欺诈提供了线索。 三、电商社交数据建模应用 信用评估一直是金融领域的重中之重。 附:公司介绍 卧龙大数据专注于用大数据服务金融行业,利用互联网跨域关联数据为金融行业提供、营销相关的“数据、技术和解决方案”。

    1.1K40

    金融数据管理——海量金融数据离线监控方法

    作者:housecheng  腾讯WXG工程师 |导语  解决金融数据监控“开发门槛高”“重复工作多”的痛点,实现PSI计算性能十倍速提升。 背景 在金融业务上,质量和稳定是生命线,我们需要对所有已经上线的要素,如策略、模型、标签、特征等构建监控。 在过去,我们部署监控的方式为: 要素负责同学在要素上线前,通过spark\sql完成对监控指标的运算并例行化; 将监控指标运算结果出库mysql\tbase,用于指标的展示和告警; 告警系统轮询指标是否异常 ,如多数要素都涉及PSI计算,只是告警阈值不一样;指标出库、配置告警等同样是重复相似操作。 小结 针对金融要素监控的“开发门槛高”“重复工作多”等问题,本文提出了“统一监控计算与检查工具”这一解决方案,本文详细论述了该方案TaskMaker、 Calculator、 Checker等各个模块的设计实现

    55910

    金融科技&大数据产品推荐: 数美金融—构建立体的全业务流程体系

    的产品投递 1、产品名称 数美全业务流程体系 2、所属分类 金融科技 · 、反欺诈 3、产品介绍 数美依托强大的AI技术与海量基础数据,为金融机构提供覆盖全业务流程的完整风解决方案。 信贷云也提供了一个可视化的规则引擎,该规则引擎集成数美所有的数据,并支持客户自定义的数据。客户可以利用这些数据,在web控制台灵活地配置各种规则策略。 ? 国内有着大量的信用白户人群,由于各类信息壁垒导致跨平台负债信息无法面全获取,风险信息严重滞后。加之黑灰产业链产值逐年攀升,欺诈防不胜防。 ? 可信度和所有的风险判断结果都会反馈给客户的专家团队。 ? 信贷云集成了数美所有的数据维度,并且支持客户自定义数据,将自定义数据与数美数据联合使用。 对其进行自动的分析挖掘,补充数据维度。

    94830

    跑路、欺诈风波不断,大数据威力何在?

    第一类是由BAT互联网巨头和互联网金融公司建立的大数据体系,BAT巨头拥有征信牌照,依据自身平台的流量优势,建立封闭系统的信用评级和风模型。 第二类是针对互联网金融企业和金融机构提供大数据服务的第三方大数据平台服务商。 以网易金融为例,其在不久前推出了全国首个开放性智能平台网易北斗,通过大数据分析技术,为国内金融机构提供获客、征信、授信、管理等多样化系统支持,从而降低金融机构的坏账率。 曾有专家指出,数据底层的技术是大数据的核心基础,如果没有过硬的技术实力,大数据也就无从谈起。 其次是数据源问题。一些平台在实施大数据过程中,收集的数据源很有限。 有不少平台为了快速做大获取融资,竟主动降低要求。 国内大数据困境 除了企业内部因素以外,在外部的市场大环境中,也出现很多问题阻碍着大数据的发展。 困境一、中国征信体系不完善。

    642140

    扫码关注腾讯云开发者

    领取腾讯云代金券