首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

大数据风控是什么

大数据风控是一种利用大数据技术来进行风险控制和管理的方法。以下是对大数据风控的详细解释:

基础概念

大数据风控通过收集、整理和分析大量的用户数据(如交易记录、行为数据、社交网络信息等),运用先进的数据分析和机器学习算法,来评估借款人的信用风险,从而决定是否给予贷款或设定贷款条件。

相关优势

  1. 精准度高:通过大数据分析,可以更准确地评估借款人的信用状况。
  2. 实时性强:能够实时监控和更新风险评估结果,及时发现潜在风险。
  3. 覆盖面广:可以处理海量的数据,覆盖更多的用户群体。
  4. 自动化程度高:减少人工干预,提高效率和一致性。

类型

  1. 个人信用评估:基于个人的消费记录、还款历史等信息进行评估。
  2. 企业信用评估:分析企业的财务状况、经营数据和市场表现。
  3. 行为风险评估:通过分析用户的在线行为、社交活动等来识别潜在风险。

应用场景

  1. 金融行业:信贷审批、信用卡申请、反欺诈等。
  2. 电商行业:用户信用评分、分期付款管理等。
  3. 共享经济:租车、租房等服务的信用担保。

可能遇到的问题及原因

  1. 数据质量问题:不准确或不完整的数据会导致评估结果失真。
    • 解决方法:建立严格的数据清洗和验证流程,确保数据的准确性和完整性。
  • 隐私保护问题:处理大量个人数据时可能涉及隐私泄露风险。
    • 解决方法:遵守相关法律法规,采用加密技术和匿名化处理,保护用户隐私。
  • 算法偏差:如果训练数据存在偏见,模型可能会做出不公平的决策。
    • 解决方法:使用多样化的训练数据集,并定期检查和调整算法模型。

示例代码(Python)

以下是一个简单的示例,展示如何使用Python进行基本的信用评分:

代码语言:txt
复制
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

# 假设我们有一个包含用户数据的DataFrame
data = pd.read_csv('user_data.csv')

# 特征和标签
X = data[['income', 'credit_history', 'employment_length']]
y = data['default']

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 训练模型
model = LogisticRegression()
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 评估模型
accuracy = accuracy_score(y_test, y_pred)
print(f'模型准确率: {accuracy}')

通过以上内容,你可以对大数据风控有一个全面的了解,并知道如何在实际应用中应对可能出现的问题。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

2017年大数据风控报告

二是通过大数据、云计算等手段,在风险防范、风险管控方面实现了线上化和批量化。 其中,大数据技术解决了消费金融乃至小微金融领域风控的效率瓶颈。...目前,有能力推动大数据风控的主要为国有大行、股份制银行等大型银行,以及部分城商行等。互联网巨头、三大运营商等由于掌握了庞大的个人数据,也开始加入到这一市场中来。...从国内金融机构应用大数据的情况看,主要将大数据应用在客户画像领域,包括风险管控、运营优化、业务创新、优化营销策略等。...“白名单”主动预授信 在消费金融中,银行、互联网金融等机构开始采用风控前置的白名单邀请制,商业银行将主动授信用于实际业务,这是对以往被动授信模式的颠覆。...就国内商业银行而言,将风险评分等技术手段引入信用贷款风控模型,是一些银行信用贷款业务爆发、不良下降的核心原因。

2K00

大数据风控模型是什么?有哪些?

摘要:在互联网金融行业,不少人可能这样觉得:认为只要数据够“大”,就能有最牛逼的风控体系和行业最低的坏账率。...在互联网金融行业,不少人可能这样觉得:认为只要数据够“大”,就能有最牛逼的风控体系和行业最低的坏账率。这种理解有些过于简单了。...其实,做大数据风控是一个挺细致的事儿,大数据风控,重要的不是数据本身,而是对数据的理解。...大数据风控模型是什么 指标体系 大数据圈流行一句话:数据决定了数据分析的上限,而模型做的是逼近这个上限。...风控模型 大数据风控更多应用与小微互金贷款,因此更多是还款意愿的控制,欺诈风险会比较高,因此构建好的反欺诈模型就非常重要,目前一般分三种: 1.

1.4K20
  • 风控数据体系-简介

    早期传统金融的风控主要利用了信用属性强大的金融数据,一般采用20个维度左右的数据,利用评分来识别客户的还款能力和还款意愿。...结合中国互联网发展,以及目前的征信监管要求,对可用数据及可用风控类数据做一个全面的梳理。...2.风控数据来源 2.1 数据应用逻辑 常见风控流程中,客户准入时提供的资信材料有限,业务机构风控数据体量不足,仅仅根据内部风险数据进行风险评估会非常片面,无法全面的把控某位客户的风险情况,所以通常需要依赖于第三方供应商提供数据作风控支撑...未来百行能不能有效被使用上还有待观察,但风控人员可先了解其相关的资料。百行征信涉及的模块,主要包括以下方面: 报告相关数据:报告时间;查询原因;查询结果等。...4.2 明确需求 建议:回顾第二节数据应用逻辑关于业务类型、风险类型、风控流程、风险画像等的介绍。

    4.2K66

    风控ML | 风控建模的KS

    我们这做风控模型的时候,经常是会用KS值来衡量模型的效果,这个指标也是很多领导会直接关注的指标。今天写一篇文章来全面地剖析一下这个指标,了解当中的原理以及实现,因为这些知识是必备的基本功。...不过这不影响我们去使用它,我们只需要知道在风控中是怎么实现的,并且在实际场景中怎么去使用它就可以了。就如上面我们说的,KS在风控主要是用于评估模型的好坏样本区分度高低的。什么是区分度?...可以看下图: 从业务上来说,就是越往后的箱子,客户的质量越差,rate整体上呈现单调性,从而可以把大多数的坏人,直接从箱的维度上就可以区分开来了,在后续的风控策略使用体验上十分友好。...02 KS的生成逻辑 KS的生成逻辑公式也是十分简单: 好样本累计占比坏样本累计占比 在风控领域,我们在计算KS前一般会根据我们认为的“正态分布原则”进行分箱,一般来说分成了10份,然后再进行KS的计算...03 KS的效果应用 KS的值域在0-1之间,一般来说KS是越大越有区分度的,但在风控领域并不是越大越好,到底KS值与风控模型可用性的关系如何,可看下表: 004 KS的实现 首先我们来对上面展示的例子进行

    4.6K30

    风控中的大数据

    风控的意义 何为风控?字面含义就是对于风险的控制从而使财务不受到损失。对于任何一家金融机构(包括银行,小贷,P2P等)来说,风控的重要性超过流量、体验、品牌这些人们熟悉的指标。...风控做得好与坏直接决定了一家公司的生与死,而且其试错成本是无穷大的,往往一旦发现风控出了问题的时候就已经无法挽回了。截止到2015年底,全国总共3000多家P2P平台里超过三分之一已经倒闭。...国际上传统的风控方法 风控的核心是要准确预测每一笔借款违约概率。显而易见,这需要量化的工具,也就是模型。...◆◆◆ 4.风控机构在大数据领域的探索 我们所说的"大数据"并非指绝对的样本量的巨大,而是把常规的信贷征信数据以外的信息统一称为"大数据"。...大数据风控的挑战 伴随着机遇同样也有挑战。就像要有美味的菜肴,我们既需要好的材料,也需要好的厨师,当前大数据在风控中运用的挑战主要还是在数据和人才这两方面。

    1.5K120

    风控ML | 风控建模的WOE与IV

    「风控ML」系列文章,主要是分享一下自己多年以来做金融风控的一些事一些情,当然也包括风控建模、机器学习、大数据风控等相关技术分享,欢迎同行交流与新同学的加入,共同学习,进步!...第一次接触这两个名词是在做风控模型的时候,老师教我们可以用IV去做变量筛选,IV(Information Value),中文名是信息值,简单来说这个指标的作用就是来衡量变量的预测能力强弱的,然后IV又是...data_bad) len_good = len(data_good) for value in value_list: # 判断是否某类是否为0,避免出现无穷小值和无穷大值...测试数据集可以后台回复 'age' 进行获取。...,不过得注意一些细节,转换数据格式。‍

    3.6K20

    机器学习与大数据风控

    但机器学习在风控中的作用究竟如何,有哪些关键技术,其优势与缺点又有哪些呢?本期硬创公开课,雷锋网邀请百融金服风险总监郑宏洲,来讲讲机器学习与大数据风控的那些事。 嘉宾介绍: 郑宏洲,百融金服风险总监。...大数据风控是量化风控的一种新形式,出现主要的条件是,现代社会是一个信息社会,在信息和数据上极大的膨胀,这给我们有更全面衡量个体风险的机会。...区别于传统风控技术,大数据风控是在方法论上做了相应的革新。风险,即不确定性。风险管理实际上就是做量化风险。大数据风控是将贷款主体各个方面的属性维度做全面风险的量化。...雷锋网:机器学习应用于风控,优势与弊端是什么? 郑宏洲:机器学习对于风控来说,优势是带来了新的技术革命。在自动化审批、区分精准度、开发效率等方面都比传统的风控方法有更多的可能性,这是它的优势。...因此要求风控专家对数据和特征有敏感度。 雷锋网:从机器学习算法到真正应用到产品中,其中需要跨越的挑战会是什么? 郑宏洲:实际上目前很多机器学习已经应用到真正的产品中,而且被大家广泛的使用。

    1.9K80

    信贷风控模型搭建及核心风控模式分类

    1.评分卡是什么? 什么是评分卡?...在我们清洗数据的时候,看到对客户信用评价中有这么一类“少量逾期”,这个类别占了相当大的比重,而且在模型中作用也比较显著,和其它类别“信用好”“信用差”等比肩。...所以说,风控模型的计算策略和机制在一个公司属于绝密,规则除了核心的员工,其他人是不能知道风控规则的。 四、风控的核心 如果说金融产品的核心是风控,那么风控的核心是什么?...五、风控模型的设计步骤 总体来说风控模型的设计主要可以分为以下的几个步骤: 1.获取数据 信用评估来自于用户数据,模型规则其实就是用户数据规则,信息的纬度也比较广泛,大致可以分为基本信息/行为信息...,一般来说活体检测是能够过滤到一大部分恶意欺诈人群的。

    2.4K10

    1.1 风控原则

    采用风险转移只是把风险转给了别的公司,D错 和坚叨叨:在FRM的考试里经常出现这种判断4个选项对错的定性题,这种题其实难度都不低,因为每个选项都是一个考点,拿这道题来说我们需要完全弄清楚以下几个问题: 风险管理的主要concern是什么...potential reward 可以被度量的reward概率部分就是risk,不能度量概率的就是uncertainty 01.6 描述和区分风险的关键类别,解释每种风险怎么产生的,评估风险的影响 有8大类风险...是企业评级可能降低的不确定性 Settlement risk是在市场上交易双方在最终交割时一方不能交割的不确定性 答案是A 和坚叨叨:这题的考点是信用风险下的四个分类,所以大家要对风险分类掌握这个问题: XX风险究竟是什么的不确定性...对 Debtholder喜欢最小风险,stakeholder更愿意通过接受风险来增加股权价格,II错 02.3 解释一个公司如何决定去对冲风险因子,这个过程中board of directors的角色是什么

    2.4K60

    支付风控模型

    二、基于规则的风控 规则是最常用的,也是相对来说比较容易上手的风控模型。从现实情况中总结出一些经验,结合名单数据,制定风控规则,简单,有效。 常见的规则有: 1....它是其它风控模型的基础。实践中,首先使用已知的规则来发现存在问题的交易,人工识别交易的风险等级后,把这些交易作为其它有监督学习的训练数据集。...三、决策树模型 风险评估从本质上来说是一个数据分类问题。 和传统的金融行业风险评估不一样的地方,在于数据规模大、业务变化快、实时要求高。一旦有漏洞被发现,会对公司造成巨大损失。...互联网金融风控离不开机器学习,特别是支付风控。 在各种支付风控模型中,决策树模式是相对比较简单易用的模型。 如下的决策树模型,我们根据已有的数据,分析数据特征,构建出一颗决策树。...支付风控场景分析 ; 支付风控数据仓库建设 ; 支付风控模型和流程分析(本文); 支付风控系统架构 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn

    2.2K21

    风控ML | 风控中的异常检测原理与应用

    今天来介绍一下风控中的异常检测,从最基础的概念开始讲起,因为本人对这块的内容平时工作也做得不多,更多滴偏向于“纸上谈兵”,有什么说得不对的地方,也欢迎各位朋友指正~谢谢。...异常检测的概念 02 异常检测的难点 03 异常检测的分类及常见算法 01 异常检测的概念 异常检测(Anomaly Detection 或 Outlier Detection),又称为离群点检测,在我们风控领域很多地方都会用到...0301 基于统计检验与分布算法 说起异常点检测,最容易想到的就是这个正态分布图了,3倍方差之外的数据属于异常数据。...它是在1977年由美国统计学家John Tukey发明,分析数据需要为定量数据,通过它可以直观的探索数据特征。我们可以从箱线图中直观地看到两点:数据离散分布情况以及离群点。...而右边为解码器,它负责把压缩了的数据再进行还原,努力恢复成原本的样子。如果恢复不了,那就意味着样本不是同一类,可以归纳为异常数据。 4、混合DAD:深度学习模型提取特征+SVM进行分类。

    2.9K20

    风控ML | 风控建模中怎么做拒绝推断

    05 验证拒绝推断效果的方式 06 总结一下 01 什么是拒绝推断 拒绝推断要解决的问题就是去推断那些被拒绝的客户,如果放贷的话,后续的贷后表现是什么样子,是好样本,还是坏样本?...《风控建模中的样本偏差与拒绝推断》https://zhuanlan.zhihu.com/p/88624987 不过我也还是把他文章里的分类体系在这里重点再次分享一下。...其中,数据法中提到的3种方式都是比较好理解的。...06 总结一下 本文算是一个对拒绝推断的入门介绍了,让初涉风控模型的同学有一个相对来说比较清晰的全局认识,这里面涉及到的很多算法模型上的细节并没有展开来讲,因为我觉得这也会让阅读带来比较大的负担,公众号的文章还是要控制在几分钟内读完比较合适...Reference [1] 异常检测算法分类及经典模型概览 https://blog.csdn.net/cyan_soul/article/details/101702066 [2] 风控建模中的样本偏差与拒绝推断

    1.9K30

    风控ML | 风控建模老司机的几点思考与总结

    「风控ML」系列文章,主要是分享一下自己多年以来做金融风控的一些事一些情,当然也包括风控建模、机器学习、大数据风控等相关技术分享,欢迎同行交流与新同学的加入,共同学习,进步!...02 数据搜集处理(Data Curation) 当我们确定了要开发的模型之后,这个时候需要做的是搜集数据与处理数据了。...搜集数据,不需要等到所有的特征都搜集完才开始开发特征或者训练模型,有多少数据,就先搞多少数据。...在了解了以上的内容后,你就可以开始搜集所有相关的数据了,因为你的数据源会非常多,所以这里你必须做好数据的归档,不然后期会很乱,而且原始数据需要备份一份不要动,方便后续复盘使用。...具体可以参考我先前的一篇文章内容《分享8点超级有用的Python编程建议》 搞到数据后,需要做的事情大概可以分为: 1、消化所有的数据含义、逻辑; 2、对数据进行各种清洗,变成你熟悉的结构; 3、对数据进行质量控制

    1.5K30

    风控决策引擎经验

    而一些风控规则,需借助爬虫接口,且需待将爬取到的数据经过二次加工与汇合之后,再对汇合的总值进行判断,如手机运营商手机使用时长,则此类风控规则应后置运行。...而对数据的提炼与作用过程,将使用到“参数”的定义。“参数”决定了区间和上下限范围,一条风控规则通常作用于某一数据类型,依据此数值是否满足“参数”的定义范围,得出是否可通过风控的结论。...由于风控最终还是数据“喂出来”的结果,风控的本质就是数据,而非主观臆断的设限,故而,随着数据样本与内容的不断发展,必然将会涉及到一些动态的调整,后期可能会发现原本设定的“参数”过于严谨而导致审核通过较低...三、记录与统计 风控最终到底是“跑出来”的,所以,整个风控系统对所有不同风控规则的触发需进行有效的记录与统计,以便后期可支持数据分析与风控模型调整的相关工作。...3、数据源内容 举例说明:某些风控规则是通过二次数据解析与汇总进行的,但原始数据需要进行保存,诸如手机账单的通话明细数据,此部分数据一是可作为风控规则使用,二是未来可用作于催收与贷后管理。

    1.2K30

    风控为本创新驱动,券商如何实现智能风控加速?

    合规风控始终是公司的首要核心竞争力,该券商不断推进全面风险管理体系建设,需要全方位提升主动合规风控管理能力,进而提升风险管理精细化、智能化水平。...面临挑战 该券商的数据基础主要来自于业务系统的关系型数据库的数据,需要在数据基础之上实现数据的运营。而由于合规风控处于企业核心竞争力的高度,原风控数据积累10年,数据量已超30TB。...02 原合规风控数据库数据量巨大,原有的传统的备份手段难以实现数据的实时保护。备份效率低下,备份作业被持续拉长,甚至影响高峰期间开展业务。为避免对业务的性能影响,不得已取消备份任务。...解决方案 沃趣科技以QData高性能数据库云平台作为数据库基础架构平台替换原传统“烟囱式”系统架构,承载合规风控核心数据库系统,助力业务处理效率大幅提升。...价值提升 1 通过QData数据库云平台大幅提升了风控系统的业务效率,风控日终调度业务从原十几个小时缩短至1.5小时,性能提升10倍以上。

    1.2K10

    【金融数据】消费金融:大数据风控那点事?

    大数据风控同传统风控在本质上没有区别,主要区别在于风控模型数据输入的纬度和数据关联性分析。...大数据风控作为传统风控方式补充,主要利用行为数据来实施风险控制,用户行为数据可以作为另外的30%客户风控的有效补充。...风险评估过程中,如果数据纬度不全,高相关数据没有被考虑进来,对风控模型是一个大的风险。信用风险评估模型缺少了重要风险因素的输入,其评估结果的偏离度就会较大,评估结果失效的可能性就很大。...大数据风控可以从数据纬度和分析角度提升传统风控水平,是一个必要的补充,可以让传统风控更加科学严谨,但是不是取代传统风控的模型和数据。...第二种是利用共享贷款数据机制,第三方企业或者大的P2P,防欺诈联盟共享贷款平台的贷款记录。其他贷款平台可以依据申请人在其他平台的贷款记录来决定是否提供贷款,降低欺诈风险。

    3.8K51

    风控领域特征工程

    在金融行业,风险控制(风控)是核心环节,它关乎资产安全、合规性以及机构的长期稳健发展。随着大数据时代的到来,金融机构面临着前所未有的数据量和复杂性。...在这样的背景下,风控领域特征工程应运而生,成为连接原始数据与精准风险评估的桥梁。 特征工程,简而言之,是对数据的一种深度加工,它通过一系列技术手段,将原始数据转化为对风险预测有用的信息。...这一过程不仅要求对数据进行清洗和转换,更要求深入理解业务逻辑,发掘数据背后的风险信号。 在风控领域,特征工程的核心目标是构建出能够准确反映个体或实体风险水平的特征集。...特征工程的意义 特征工程在风控领域至关重要,它涉及将原始数据转化为模型可用的格式,以及提升模型的预测能力。 适配模型算法: 确保特征输入格式与所选算法兼容,进行必要的转换处理。...通过综合运用这些特征衍生方法,风控领域的特征工程能够更全面地挖掘数据潜力,为风险评估提供多维度的视角。

    36111
    领券