首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

传统特征选择(非因果特征选择)和因果特征选择的异同

传统特征选择(非因果特征选择)和因果特征选择是两种不同的特征选择方法,它们在目标、方法和应用场景上有所区别。...在某些情况下,可能无法提供最优的特征子集。 应用场景: 适用于数据预处理和特征维度约简。 用于各种机器学习任务,如分类、回归和聚类。 二、因果特征选择 因果特征选择。...定义:因果特征选择关注于识别目标变量的马尔可夫毯(Markov Blanket,MB)作为特征子集。马尔可夫毯包括目标变量的直接原因(父节点)、直接结果(子节点)和其他父节点的子节点(配偶)。...这种方法通过考虑特征之间的局部因果关系来选择特征,从而促进更可解释和稳健的预测建模。 特点: 基于因果关系:因果特征选择考虑特征之间的因果关系,而不仅仅是相关性。...可以用于提高预测模型的可解释性和稳健性。 三、小结 利用贝叶斯网络框架和信息论,研究者揭示了因果和非因果特征选择方法的共同目标:寻找类属性的马尔可夫毯,即理论上最优的分类特征集。

22800

特征选择

01 为什么要做特征选择? 我们研究特征选择,有这些好处: 1 大数据时代,数据挖掘和机器学习的一大挑战就是维数灾难,特征选择是缓解维数灾的一种有效方法。...2 通过特征选择,可以建立有效的模型,避免过拟合,提升模型能。 3 对高维数据做处理和分析时,使用特征选择,可以减少内存的空间和降低算力成本。...4 做特征选择,可以降低数据获取的难度和成本 ,也有利于数据的理解。 总之,我们可以从数据的整个链,即数据的获取,数据存储,数据处理,数据分析和挖掘,数据应用来思考特征选择所带来的价值和意义。...你会发现,对数据做特征选择,对于数据链的各个环节都有益处。 02 特征选择是什么? 特征选择是针对所要解决的特定问题从原始特征集选择或者搜索到一个最佳的特征子集。...如何得到这个最佳特征子集,那就是特征选择的方法或者算法要做的事情。 03 怎么做特征选择? 前面已经提到了,通过特征选择方法或者算法从数据的原始特征集中获得最佳的特征子集。如何来度量这个“最佳”?

50430
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    特征选择

    Embedded:嵌入法,先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据系数从大到小排序选择特征。类似于Filter方法,但是是通过训练来确定特征的优劣。...关联最密切的一些 特征 ? 。 Pearson相关系数 皮尔森相关系数是一种最简单的,能帮助理解特征和响应变量之间关系的方法,该方法衡量的是变量之间的线性相关性,结果的取值区间为 ?...想把互信息直接用于特征选择其实不是太方便:1、它不属于度量方式,也没有办法归一化,在不同数据及上的结果无法做比较;2、对于连续变量的计算不是很方便( ? 和 ? 都是集合, ? , ?...方差选择法 过滤特征选择法还有一种方法不需要度量特征 ? 和类别标签 ? 的信息量。这种方法先要计算各个特征的方差,然后根据阈值,选择方差大于阈值的特征。...,然后每次删除一个特征,并评价,直到达到阈值或者为空,然后选择最佳的 ? 。 这两种算法都可以工作,但是计算复杂度比较大。时间复杂度为 ?

    1K40

    特征选择

    (1)减轻维数灾难问题 (2)降低学习任务的难度 处理高维数据的两大主流技术 特征选择和降维 特征选择有哪些方法呢?...原理实现:在不同的特征子集上运行训练模型,不断地重复,最终汇总特征选择的结果。比如可以统计某个特征被认为是重要特征的频率 (被选为重要特征的次数除以它所在的子集被测试的次数)。...优缺点 优点: 特征值下降的不是特别急剧,这跟纯lasso的方法和随机森林的结果不一样, 能够看出稳定性选择对于克服过拟合和对数据理解来说都是有帮助的。...总的来说,好的特征不会因为有相似的特征、关联特征而得分为0。 在许多数据集和环境下,稳定性选择往往是性能最好的方法之一。...工作原理 先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据系数从大到小选择特征。

    1.3K32

    特征选择:11 种特征选择策略总结

    来源:DeepHub IMBA本文约4800字,建议阅读10+分钟本文与你分享可应用于特征选择的各种技术的有用指南。 太多的特征会增加模型的复杂性和过拟合,而太少的特征会导致模型的拟合不足。...本文的目的是概述一些特征选择策略: 删除未使用的列 删除具有缺失值的列 不相关的特征 低方差特征 多重共线性 特征系数 p 值 方差膨胀因子 (VIF) 基于特征重要性的特征选择 使用 sci-kit...26 列——每行代表一个汽车实例,每列代表其特征和相应的价格。...我们可以分别测试数字和分类特征的多重共线性: 数值变量 Heatmap 是检查和寻找相关特征的最简单方法。...找到最佳特征是算法如何在分类任务中工作的关键部分。我们可以通过 feature_importances_ 属性访问最好的特征。 让我们在我们的数据集上实现一个随机森林模型并过滤一些特征。

    99630

    特征选择

    去除不相关特征往往会降低学习任务的难度,我们把复杂的问题变得简单化,往往也能使得效率变高,结果变的更准确。 ?...方差选择法 设置一个阈值,然后计算各个特征的方差,根据阈值,选择方差大于阈值的特征。...K个最好的特征,返回选择特征后的数据 # 第一个参数为计算评估特征是否好的函数,该函数输入特征矩阵和目标向量,输出二元组(评分,P值)的数组,数组第i项为第i个特征的评分和P值。...(), n_features_to_select=2).fit_transform(iris.data, iris.target) 04 嵌入式(Embedding) 在过滤式和包裹式特征选择方法中,...特征选择过程与学习器训练过程有明显的分别;与此不同的是,嵌入式特征选择是将特征选择过程与学习器训练过程融为一体,两者在同一个优化过程中完成,即在学习器训练过程中自动的进行了特征选择。

    56830

    特征选择:11 种特征选择策略总结

    太多的特征会增加模型的复杂性和过拟合,而太少的特征会导致模型的拟合不足。将模型优化为足够复杂以使其性能可推广,但又足够简单易于训练、维护和解释是特征选择的主要工作。...本文的目的是概述一些特征选择策略: 删除未使用的列 删除具有缺失值的列 不相关的特征 低方差特征 多重共线性 特征系数 p 值 方差膨胀因子 (VIF) 基于特征重要性的特征选择 使用 sci-kit...26 列——每行代表一个汽车实例,每列代表其特征和相应的价格。...我们可以分别测试数字和分类特征的多重共线性: 数值变量 Heatmap 是检查和寻找相关特征的最简单方法。...找到最佳特征是算法如何在分类任务中工作的关键部分。我们可以通过 feature_importances_ 属性访问最好的特征。 让我们在我们的数据集上实现一个随机森林模型并过滤一些特征。

    88331

    特征选择:11 种特征选择策略总结!

    太多的特征会增加模型的复杂性和过拟合,而太少的特征会导致模型的拟合不足。将模型优化为足够复杂以使其性能可推广,但又足够简单易于训练、维护和解释是特征选择的主要工作。...本文的目的是概述一些特征选择策略: 删除未使用的列 删除具有缺失值的列 不相关的特征 低方差特征 多重共线性 特征系数 p 值 方差膨胀因子 (VIF) 基于特征重要性的特征选择 使用 sci-kit...26 列——每行代表一个汽车实例,每列代表其特征和相应的价格。...我们可以分别测试数字和分类特征的多重共线性: 数值变量 Heatmap 是检查和寻找相关特征的最简单方法。...找到最佳特征是算法如何在分类任务中工作的关键部分。我们可以通过 feature_importances_ 属性访问最好的特征。 让我们在我们的数据集上实现一个随机森林模型并过滤一些特征。

    1.4K40

    特征工程之特征选择

    特征工程是数据分析中最耗时间和精力的一部分工作,它不像算法和模型那样是确定的步骤,更多是工程上的经验和权衡。因此没有统一的方法。这里只是对一些常用的方法做一个总结。本文关注于特征选择部分。...在sklearn中,有F检验的函数f_classif和f_regression,分别在分类和回归特征选择时使用。     第四个是互信息,即从信息熵的角度分析各个特征和输出值之间的关系评分。...以上就是过滤法的主要方法,个人经验是,在没有什么思路的 时候,可以优先使用卡方检验和互信息来做特征选择 2.2 包装法选择特征     包装法的解决思路没有过滤法这么直接,它会选择一个目标函数来一步步的筛选特征...以此类推,直到剩下的特征数满足我们的需求为止。 2.3 嵌入法选择特征     嵌入法也是用机器学习的方法来选择特征,但是它和RFE的区别是它不是通过不停的筛掉特征来进行训练,而是使用的都是特征全集。...在sklearn中,使用SelectFromModel函数来选择特征。     最常用的是使用L1正则化和L2正则化来选择特征。

    1.1K20

    特征选择与特征抽取

    特征抽取和特征选择是DimensionalityReduction(降维)两种方法,但是这两个有相同点,也有不同点之处: 1....相同点和不同点 特征选择和特征抽取有着些许的相似点,这两者达到的效果是一样的,就是试图去减少特征数据集中的属性(或者称为特征)的数目;但是两者所采用的方式方法却不同:特征抽取的方法主要是通过属性间的关系...,如组合不同的属性得新的属性,这样就改变了原来的特征空间;而特征选择的方法是从原始特征数据集中选择出子集,是一种包含的关系,没有更改原始的特征空间。...PCA得到的投影空间是协方差矩阵的特征向量,而LDA则是通过求得一个变换W,使得变换之后的新均值之差最大、方差最大(也就是最大化类间距离和最小化类内距离),变换W就是特征的投影方向。 4....总结 特征选择不同于特征提取,特征和模型是分不开,选择不同的特征训练出的模型是不同的。在机器学习=模型+策略+算法的框架下,特征选择就是模型选择的一部分,是分不开的。

    1.8K31

    特征工程(上)- 特征选择

    机器学习问题,始于构建特征。 特征质量的好坏,直接影响到最终的模型结果。 构建特征是一个很大的工程,总体来讲包括“特征选择”、“特征表达”和“特征评估”3个部分。...整体来讲,从特征选择的过程中有没有模型的参与,可以将特征选择的方法分为,基于统计量的选择和基于模型的选择。 (在本文的讨论中,默认所有的特征取值已经去除量纲的影响,或者说已经做过归一化处理。)...基于统计量的特征选择 如果把每个特征看做一个随机变量,在不同的样本点处该随机变量可能会取到不同的值。可以用统计的方法,基于样本集的统计结果,对特征做出选择。...选择的标准主要有两个,一是特征本身取值的分散程度;二是该特征与要预测的结果之间的相关程度。 常用的几个统计量和方法包括,方差、相关系数、假设检验和互信息。下面依次说明。...与其他模型比,树模型的方差较大,因此选出来的特征也相对更不稳定。 因此,用树模型选择特征时,建议综合多次的模型训练结果。

    91220

    集成特征选择

    集成特征选择是融合集成学习思想和特征选择方法,它结合了多个特征选择器的输出,通常可以提高性能,使得用户不必局限于选择单一的方法。...简而言之: 集成特征选择 = 集成学习 + 特征选择 ? 2 集成特征选择类型 集成特征选择可以分为同构的和异构的。 同构的是指采用相同基特征选择器;而异构的是指采用不同的基特征选择器。...3 集成特征选择要解决的关键问题 集成特征选择要解决的关键问题,描述如下: 1 基特征选择选择器的确定 2 集成特征选择的策略,是采用同构的,还是异构的 3 集成特征选择的最终结果的合并策略 4 集成特征选择实现的常用工具...集成特征选择方法实现的常用工具 1 MATLAB,它的统计学和机器学习工具箱包括这些方法可以做特征选择。...例如基于低方差移除特征;基于卡方检验和互信息的单一变量的特征选择;递归特征消除的方法。等等。 关于集成特征选择,您有什么想法请留言。

    1.4K10

    7,特征的选择

    一,特征工程 有这么一句话在业界广泛流传:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。...根据特征使用方案,有计划地获取、处理和监控数据和特征的工作称之为特征工程,目的是最大限度地从原始数据中提取特征以供算法和模型使用。...特征工程包括特征的提取,特征的预处理,特征的选择和特征的监控等内容。 本文我们聚焦如何使用sklearn中的feature_selection库来进行特征选择。...即如何从多个特征中选择出若干有效的特征。 二,特征选择概述 当数据预处理完成后,我们需要选择有意义的特征输入机器学习的算法和模型进行训练。...相关系数,卡方检验,互信息法选择特征的结果常常是类似的。 ? 四,Embedded嵌入法 1,基于惩罚项的特征选择法 使用带惩罚项的基模型,除了筛选出特征外,同时也进行了降维。

    93132

    xgboost特征选择

    Xgboost在各大数据挖掘比赛中是一个大杀器,往往可以取得比其他各种机器学习算法更好的效果。数据预处理,特征工程,调参对Xgboost的效果有着非常重要的影响。...这里介绍一下运用xgboost的特征选择,运用xgboost的特征选择可以筛选出更加有效的特征代入Xgboost模型。...这里采用的数据集来自于Kaggle | Allstate Claims Severity比赛, https://www.kaggle.com/c/allstate-claims-severity/data...这里的训练集如下所示,有116个离散特征(cat1-cat116),14个连续特征(cont1 -cont14),离散特征用字符串表示,先要对其进行数值化: id cat1 cat2 cat3...0.44467 0.327915 0.321570 0.605077 4 0.247408 0.24564 0.22089 0.21230 0.204687 0.202213 0.246011 xgboost的特征选择的代码如下

    2.7K60

    机器学习之特征工程-特征选择

    Embedded:集成法,先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据系数从大到小选择特征。类似于Filter方法,但是是通过训练来确定特征的优劣。...,结果如下: [ 5.1 3.5 1.4 0.2]0[ 1.4] 皮尔逊系数 皮尔逊系数只能衡量线性相关性,先要计算各个特征对目标值的相关系数以及相关系数的P值。...#第一个参数为计算评估特征是否好的函数,该函数输入特征矩阵和目标向量,输出二元组(评分,P值)的数组,数组第i项为第i个特征的评分和P值。...(GradientBoostingClassifier()).fit_transform(iris.data, iris.target) 当然还有别的方法: 通过特征组合后再来选择特征:如对用户id和用户特征组合来获得较大的特征集再来选择特征...,这种做法在推荐系统和广告系统中比较常见,这也是所谓亿级甚至十亿级特征的主要来源,原因是用户数据比较稀疏,组合特征能够同时兼顾全局模型和个性化模型。

    2K50

    Python特征选择(全)

    1 特征选择的目的 机器学习中特征选择是一个重要步骤,以筛选出显著特征、摒弃非显著特征。...Sklearn的实现是通过矩阵相乘快速得出所有特征的观测值和期望值,在计算出各特征的 χ2 值后排序进行选择。在扩大了 chi2 的在连续型变量适用范围的同时,也方便了特征选择。...其基本思想是根据该特征所命中黑白样本的比率与总黑白样本的比率,来对比和计算其关联程度。...验证样本一般包括样本外(Out of Sample,OOS)和跨时间样本(Out of Time,OOT)【Github代码链接】 2.2 嵌入法--特征选择 嵌入法是直接使用模型训练得到特征重要性,在模型训练同时进行特征选择...首先从特征全集中产生出一个特征子集,然后用评价函数对该特征子集进行评价,评价的结果与停止准则进行比较,若评价结果比停止准则好就停止,否则就继续产生下一组特征子集,继续进行特征选择。

    1.1K30

    Python特征选择的总结

    区分单变量、双变量和多变量分析。 我们能用PCA来进行特征选择吗? 前向特征选择和后向特征选择的区别是什么? 01 什么是特征选择,为何重要?...此函数具有不同的特征选择技术。 SequentialFeatureSelector() 有 11 个参数,您可以调整这些参数以获得最佳结果。...它应该小于数据集的所有特征数总和。mlxtend 包还提供了“best”参数,其中选择器返回最佳交叉验证性能。...: sfs.fit(X, y) sfs.k_feature_names_ 返回并查看ML任务应该使用的最佳特性: 通过比较每个训练步骤中的性能和特征数量来了解选择过程。...04 总结 在本文中,我们介绍了特征选择技术的基本原理,这对理解重要特征和结果变量之间的相关性是非常关键的。

    25010

    特征选择算法实战

    算法从训练集D中随机选择一个样本R,然后从和R同类的样本中寻找最近邻样本H,称为Near Hit,从和R不同类的样本中寻找最近邻样本M,称为NearMiss,然后根据以下规则更新每个特征的权重:如果R和...由于算法在运行过程中,会选择随机样本R,随机数的不同将导致结果权重有一定的出入,因此本文采取平均的方法,将主程序运行20次,然后将结果汇总求出每种权重的平均值。...如下所示,列为属性编号,行为每一次的计算结果: 下面是特征提取算法计算的特征权重趋势图,计算20次的结果趋势相同: ?...限于篇幅,只选择了上述3个特征属性进行图像绘制,从结果来看, 可以很直观的观察到K-means算法分类后的情况,第一类与第一类的分类界限比较清晰。但是不容易观察到正确和错误的情况。...下面将对特征权重按照从大到小的顺序,选择相应的数据,进行聚类分析,结论如下: 1.直接选择全部9种属性,分类成功率为:94.44%; 2.选择属性6,属性1,分类成功率为:91.36%; 3.选择属性6

    1.5K40

    扫码

    添加站长 进交流群

    领取专属 10元无门槛券

    手把手带您无忧上云

    扫码加入开发者社群

    相关资讯

    热门标签

    活动推荐

      运营活动

      活动名称
      广告关闭
      领券