首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

比较列存储索引与行索引

为了更好的理解列存储索引,接下来我们一起通过列存储索引与传统的行存储索引地对比2014中的列存储索引带来了哪些改善。由于已经很多介绍列存储,因此这里我仅就性能的改进进行重点说明。...FactTransaction_RowStore - 该表将包含一个聚集索引和一个非聚集列存储索引和一个非聚集行存储索引。     首先我用脚本文件创建表和索引,然后用30m行数据填充到三个表中。...观察测试2 正如上图所示,行存储索引表的索引查找远比列存储索引表查询快的多。这主要归因于2014的sqlserver不支持聚集列存储索引的索引查找。...观察测试3    正如之前提到的,索引扫描列存储要比行存储快,俩个逻辑读和运行时间表明列存储索引在大表扫描上是更优的方式,因此更适合于数据仓库的表。...观察测试5   在这种情况下 ,列存储索引的表要比行存储的更新慢的多。

1.6K60

Bootstrap行和列

在Bootstrap中,行(Row)和列(Column)是构建响应式网格布局的核心组件。它们允许我们创建灵活的网格系统,以便在不同的屏幕尺寸下进行布局。...列(Column)列(Column)是行的子元素,用于将内容放置在网格布局中的特定位置。通过指定列的宽度和偏移量,我们可以控制内容在不同屏幕尺寸下的布局。...在这种情况下,.col-6表示每个列占据行的一半宽度,因此左侧和右侧内容将并排显示。Bootstrap使用12列的网格系统。...演示如何使用行和列创建响应式网格布局: ...每个列包含一个卡片(.card),其中有博客文章的标题和内容。通过使用行和列,我们可以创建具有自适应布局的网格系统,以适应不同屏幕尺寸的设备。

2.1K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    SQL Server 索引和表体系结构(包含列索引)

    包含列索引 概述 包含列索引也是非聚集索引,索引结构跟聚集索引结构是一样,有一点不同的地方就是包含列索引的非键列只存储在叶子节点;包含列索引的列分为键列和非键列,所谓的非键列就是INCLUDE中包含的列...,至少需要有一个键列,且键列和非键列不允许重复,非键列最多允许1023列(也就是表的最多列-1),由于索引键列(不包括非键)必须遵守现有索引大小的限制(最大键列数为 16,总索引键大小为 900 字节)...只能对表或索引视图的非聚集索引定义非键列。 除 text、ntext 和 image 之外,允许所有数据类型。 精确或不精确的确定性计算列都可以是包含列。有关详细信息,请参阅为计算列创建索引。...与键列一样,只要允许将计算列数据类型作为非键索引列,从 image、ntext 和 text 数据类型派生的计算列就可以作为非键(包含性)列。...除非先删除索引,否则无法从表中删除非键列。 除进行下列更改外,不能对非键列进行其他更改: 注意事项 键列的大小尽量小,有利用提高效率 将用于搜索和查找的列为键列,键列尽量不要包含没必要的列。

    1.4K80

    SQL中的行转列和列转行

    而在SQL面试中,一道出镜频率很高的题目就是行转列和列转行的问题,可以说这也是一道经典的SQL题目,本文就这一问题做以介绍分享。 ? 给定如下模拟数据集,这也是SQL领域经典的学生成绩表问题。...01 行转列:sum+if 在行转列中,经典的解决方案是条件聚合,即sum+if组合。...其基本的思路是这样的: 在长表的数据组织结构中,同一uid对应了多行,即每门课程一条记录,对应一组分数,而在宽表中需要将其变成同一uid下仅对应一行 在长表中,仅有一列记录了课程成绩,但在宽表中则每门课作为一列记录成绩...由多行变一行,那么直觉想到的就是要groupby聚合;由一列变多列,那么就涉及到衍生提取; 既然要用groupby聚合,那么就涉及到将多门课的成绩汇总,但现在需要的不是所有成绩汇总,而仍然是各门课的独立成绩...02 列转行:union 列转行是上述过程的逆过程,所以其思路也比较直观: 行记录由一行变为多行,列字段由多列变为单列; 一行变多行需要复制,列字段由多列变单列相当于是堆积的过程,其实也可以看做是复制;

    7.2K30

    MySQL如何给JSON列添加索引(二)

    (一)》,我们简单介绍了MySQL中JSON数据类型,相信大家对JSON数据类型有了一定的了解,那么今天我们来简单看下如何在JSON列上添加索引? InnoDB支持虚拟生成列的二级索引。...不支持其他索引类型。在虚拟列上定义的二级索引有时称为“虚拟索引”。 二级索引可以在一个或多个虚拟列上创建,也可以在虚拟列和常规列或存储的生成列的组合上创建。...即使有额外的写入成本,虚拟列上的二级索引也可能比生成的存储列更好,后者在聚簇索引中实现,从而导致需要更多磁盘空间和内存的较大表。...对于 COMPACT和REDUNDANT格式,记录值的数据长度受索引键限制767字节,对于DYNAMIC和 COMPRESSED列格式,受索引键限制3072字节。...要创建间接引用此类列的索引,可以定义一个生成列,该列提取应建立索引的信息,然后在生成的列上创建索引,如下所示: 说明:8.0和5.7都支持在生成列上添加索引 mysql>CREATE TABLE jemp

    7.4K11

    Excel按列排序和按行排序

    文章背景:Excel二维表中记录着多行多列的数据,有时需要按行或按列排序,使数据更加清晰、易读。下面分别对按列排序和按行排序进行介绍。...对于商品编号一列,存在文本型数字,因此,按列排序时会出现排序提醒。 将任意类似数字的内容排序 所有类似数字的文本会以数字大小排序。...分别将数字和以文本形式存储的的数字排序 首先排序的是数字,其次排序的是数字和字母混合的文本。...按行排序 视频演示:http://mpvideo.qpic.cn/0b78lyaaaaaapuabszbfqjpvaxwdabpaaaaa.f10002.mp4? 本例中,行一代表各个月份。...在进行按行排序时,数据区域不包括A列。在Excel中,没有行标题的概念。因此,排序前如果框中A列的话,A列也将参与排列,会排到12月份之后,而这不是我们想要的结果。

    3.1K10

    深入解析Elasticsearch的内部数据结构和机制:行存储、列存储与倒排索引之倒排索引(三)

    那么当我们谈论倒排索引结构时,我们主要涉及到三个部分:倒排表(Posting List)、词项字典(Term Dictionary)和词项索引(Term Index)。...下面,我将详细解释这三个部分的作用和工作原理。 2.1. 倒排表(Posting List) 倒排表是倒排索引结构中最核心的部分。...通过这种方式,词项索引(Term Index)和词典(Term Dictionary)的结合使用可以在不消耗大量内存的情况下实现高效的词典查找,从而支持全文检索系统中的快速查找操作。...倒排索引结构通过倒排表、词项字典和词项索引这三个部分,实现了从单词到包含这些单词的文档的快速映射。这种结构使得搜索引擎能够高效地处理大量的文本数据和复杂的查询请求。...此外,Elasticsearch还支持多种查询类型和分析器,可以根据需要定制搜索行为。 总结 倒排索引是Elasticsearch实现高效搜索的核心技术之一。

    1.4K10

    性能优化-如何选择合适的列建立索引

    3、如何选择合适的列建立索引 1、在where从句,group by从句,order by从句,on从句中的列添加索引 2、索引字段越小越好(因为数据库数据存储单位是以“页”为单位的,数据存储的越多,...2、利用索引中的附加列,您可以缩小搜索的范围,但使用一个具有两列的索引 不同于使用两个单独的索引。...复合索引的结构与电话簿类似,人名由姓和名构成,电话簿首先按姓氏对进行排序,然后按名字对有相同姓氏的人进行排序。...如果您知 道姓,电话簿将非常有用;如果您知道姓和名,电话簿则更为有用,但如果您只知道名不姓,电话簿将没有用处。 所以说创建复合索引时,应该仔细考虑列的顺序。...对索引中的所有列执行搜索或仅对前几列执行搜索时,复合索引非常有用;仅对后面的任意列执行搜索时,复合索引则没有用处。

    2.1K30

    列存储、行存储之间的关系和比较

    索引 Join 索引 Time Analytic 索引 三行列存储比较 基于行的储存 基于列的存储 四列存储数据查询中的连接策略选择方法 引言 相关工作 定义 连接策略选择方法 简单下推规则 动态优化树...显而易见,不论如何进行分区,分区都会带来很多问题(更不必说额外的维护了),不过,它打开了性能改进的实质性途径。...列存储法是将数据按照列存储到数据库中,与行存储类似; 3.1基于行的储存 基于行的存储是将数据组织成多个行,这样就能在一个操作中找到所有的列。...面对海量的复杂查询, 如何使列存储技术扬长避短, 充分利用其查询优势, 成为了当今列存储领域的研究重点。查询优化在数据库领域一直占有重要的地位。...定义 2 (rowid) 为了重组一行数据, 每一列都附加一个伪列rowid, 形如, 如图 1. 每一列在rowid 上都存在B 树索引。

    6.7K10

    Pandas库的基础使用系列---获取行和列

    前言我们上篇文章简单的介绍了如何获取行和列的数据,今天我们一起来看看两个如何结合起来用。获取指定行和指定列的数据我们依然使用之前的数据。...我们先看看如何通过切片的方法获取指定列的所有行的数据info = df.loc[:, ["2021年", "2017年"]]我们注意到,行的位置我们使用类似python中的切片语法。...同样我们可以利用切片方法获取类似前4列这样的数据df.iloc[:, :4]由于我们没有指定行名称,所有指标这一列也计算在内了。...如果要使用索引的方式,要使用下面这段代码df.iloc[2, 2]是不是很简单,接下来我们再看看如何获取多行多列。为了更好的的演示,咱们这次指定索引列df = pd.read_excel(".....通常是建议这样获取的,因为从代码的可读性上更容易知道我们获取的是哪一行哪一列。当然我们也可以通过索引和切片的方式获取,只是可读性上没有这么好。

    63700
    领券