如生成最大值、最小值、均值,或者是求和、平方和取对数等。在 Stata 中,最基本的是使用 replace 和 generate 命令,另外 egen 提供了大量的函数能便捷的处理数据。...Pandas 会根据要合并的变量是否唯一来自动确定。...2, 3) 保留 DataFrame "right" 所有的观测值 how='inner' keep(3) 保留匹配上的观测值 how='outer' keep(1 2 3) 保留所有观测值 1.8...在这些情况下,给列起一个名字很有意义,这样就知道要处理的内容。long.unstack('time') 进行 reshape ,它使用索引 'time' 并创建一个新的它具有的每个唯一值的列。...请注意,这些列现在具有多个级别,就像以前的索引一样。这是标记索引和列的另一个理由。如果要访问这些列中的任何一列,则可以照常执行操作,使用元组在两个级别之间进行区分。
每个Excel文件都有不同的保险单数据字段,如保单编号、年龄、性别、投保金额等。这些文件有一个共同的列,即保单ID。...注意到“保险ID”列包含一个称为“唯一密钥标识符”的内容,该标识符可用于链接三个电子表格中的保单。由于熟悉Excel,我的第一反应是:这很容易,VLOOKUP函数将能完成这项工作。...我可以使用VLOOKUP查找每个“保险ID”的值,并将所有数据字段合并到一个电子表格中!...注意,在第一个Excel文件中,“保险ID”列包含保险编号,而在第二个Excel文件中,“ID”列包含保险编号,因此我们必须指定,对于左侧数据框架(df_1),希望使用“保险ID”列作为唯一键;而对于右侧的数据框架...有两个“保单现金值”列,保单现金值_x(来自df_2)和保单现金值_y(来自df_3)。当有两个相同的列时,默认情况下,pandas将为列名的末尾指定后缀“_x”、“_y”等。
例如,想统计前面数据表中开课的个数,则可用如下语句: ? 02 unique nunique用于统计唯一值个数,而unique则用于统计唯一值结果序列。...普通聚合函数mean和agg的用法区别是,前者适用于单一的聚合需求,例如对所有列求均值或对所有列求和等;而后者适用于差异化需求,例如A列求和、B列求最值、C列求均值等等。...05 pivot_table pivot_table是pandas中用于实现数据透视表功能的函数,与Excel中相关用法如出一辙。 何为数据透视表?...数据透视表本质上仍然数据分组聚合的一种,只不过是以其中一列的唯一值结果作为行、另一列的唯一值结果作为列,然后对其中任意(行,列)取值坐标下的所有数值进行聚合统计,就好似完成了数据透视一般。...在以上参数中,最重要的有4个: values:用于透视统计的对象列名 index:透视后的行索引所在列名 columns:透视后的列索引所在列名 aggfunc:透视后的聚合函数,默认是求均值 这里仍然以求各班每门课程的平均分为例
图片Pandas的功能与函数极其丰富,要完全记住和掌握是不现实的(也没有必要),资深数据分析师和数据科学家最常使用的大概有二三十个函数。在本篇内容中,ShowMeAI 把这些功能函数总结为10类。...熟练掌握它们,你就可以轻松解决80% 以上的数据处理问题。也推荐大家阅读ShowMeAI针对数据分析编写的教程和速查表,快速成为数据洞察高手!...以下函数很常用:duplicated: 识别DataFrame中是否有重复,可以指定使用哪些列来标识重复项。drop_duplicates:从 DataFrame 中删除重复项。...注意:重要参数id_vars(对于标识符)和 value_vars(其值对值列有贡献的列的列表)。pivot:将长表转换为宽表。...注意:重要参数index(唯一标识符), columns(列成为值列),和 values(具有值的列)。
表格行的数据结构,包含一组有序的列 Series 何为Series?...Series由一组数据(numpy的ndarray)和一组与之相对应的标签构成 创建Series from pandas import Series,DataFrame import pandas...ser02[0:2] ser01["n"] 运算 类似ndarray运算 print(ser01[ser01>=2])#注意输出值用中括号括起来 print(ser01>=2) ser01+...(how="all") #替换缺失值 df04.fillna(0) df04.fillna({0:1,1:2,2:3}) 数学统计 常见的方法如count describe min/max idxmin...cov,corr df2=DataFrame({ "gdp":[2,4,6], "chukou":[3,2,1] }) df2.cov() df2.corr() 唯一值,值计数,成员资格
默认情况下,它们返回沿轴axis=0的系列,这意味着可以获得列的统计信息: 如果需要每行的统计信息,使用axis参数: 默认情况下,缺失值不包括在描述性统计信息(如sum或mean)中,这与Excel...处理空单元格的方式一致,因此在包含空单元格的区域内使用Excel的AVERAGE公式将获得与应用于具有相同数字和NaN值(而不是空单元格)的系列的mean方法相同的结果。...为此,首先按洲对行进行分组,然后应用mean方法,该方法将计算每组的均值,自动排除所有非数字列: 如果包含多个列,则生成的数据框架将具有层次索引,即我们前面遇到的多重索引: 可以使用pandas提供的大多数描述性统计信息...Region)的唯一值,并将其转换为透视表的列标题,从而聚合来自另一列的值。...这使得跨感兴趣的维度读取摘要信息变得容易。在我们的数据透视表中,会立即看到,在北部地区没有苹果销售,而在南部地区,大部分收入来自橙子。如果要反过来将列标题转换为单个列的值,使用melt。
一、引言在数据分析领域,Pandas是一个强大的Python库,它提供了灵活高效的数据结构和数据分析工具。其中,数据的合并操作是数据预处理中不可或缺的一部分。...本文将深入探讨Pandas中的两种主要合并方法——concat和merge,从基础概念到常见问题,再到报错解决,帮助读者全面掌握这两种方法。...二、concat的基本用法(一)概述concat函数用于沿着一个特定的轴(行或列)将多个Pandas对象(如DataFrame或Series)连接在一起。...(三)案例分析继续以上述学生成绩为例,如果我们想根据student_id将语文成绩和数学成绩合并到一个DataFrame中,并且希望保留所有学生的记录(即使有的学生缺少某一科成绩),我们可以使用merge...对于merge,如果用于合并的键不是唯一的,可能会导致意外的结果。确保用于合并的键是唯一标识符,或者根据业务需求明确合并规则。(二)列名冲突问题在合并过程中,很容易遇到列名冲突的情况。
pandas中的许多数据类型具有多个子类型,它们可以使用较少的字节去表示不同数据,比如,float型就有float16、float32和float64这些子类型。...当我们把一列转换成category类型时,pandas会用一种最省空间的int子类型去表示这一列中所有的唯一值。...为了介绍我们何处会用到这种类型去减少内存消耗,让我们来看看我们数据中每一个object类型列中的唯一值个数。 可以看到在我们包含了近172000场比赛的数据集中,很多列只包含了少数几个唯一值。...注意这一特殊列可能代表了我们一个极好的例子——一个包含近172000个数据的列只有7个唯一值。 这样的话,我们把所有这种类型的列都转换成类别类型应该会很不错,但这里面也要权衡利弊。...对于唯一值数量少于50%的object列,我们应该坚持首先使用category类型。如果某一列全都是唯一值,category类型将会占用更多内存。
对于表示数值(如整数和浮点数)的块,Pandas 将这些列组合在一起,并存储为 NumPy ndarry 数组。...当我们将列转换为 category dtype 时,Pandas 使用了最省空间的 int 子类型,来表示一列中所有的唯一值。 想要知道我们可以怎样使用这种类型来减少内存使用量。...在上面的表格中,我们可以看到它只包含了七个唯一的值。我们将使用 .astype() 的方法将其转换为 categorical。 如你所见,除了列的类型已经改变,这些数据看起来完全一样。...请注意,这一列可能代表我们最好的情况之一:一个具有 172,000 个项目的列,只有 7 个唯一的值。 将所有的列都进行同样的操作,这听起来很吸引人,但使我们要注意权衡。...当对象列中少于 50% 的值时唯一对象时,我们应该坚持使用 category 类型。但是如果这一列中所有的值都是唯一的,那么 category 类型最终将占用更多的内存。
也要注意Python如何为数组选择浮点数(或向上转型)。 ? 并不是所有使用NaN的算数运算的结果是NaN。 ? 对比上面单元格中的Python程序,使用SAS计算数组元素的平均值如下。...SAS排除缺失值,并且利用剩余数组元素来计算平均值。 ? 缺失值的识别 回到DataFrame,我们需要分析所有列的缺失值。Pandas提供四种检测和替换缺失值的方法。...解决缺失数据分析的典型SAS编程方法是,编写一个程序使用计数器变量遍历所有列,并使用IF/THEN测试缺失值。 这可以沿着下面的输出单元格中的示例行。...由于为每个变量产生单独的输出,因此仅显示SAS输出的一部分。与上面的Python for循环示例一样,变量time是唯一有缺失值的变量。 ?...正如你可以从上面的单元格中的示例看到的,.fillna()函数应用于所有的DataFrame单元格。我们可能不希望将df["col2"]中的缺失值值替换为零,因为它们是字符串。
如果笛卡尔积是 Pandas 的唯一选择,那么将数据帧的列加在一起这样的简单操作将使返回的元素数量激增。 在此秘籍中,每个序列具有不同数量的元素。...为此,我们从max_cols序列的值中收集所有唯一的学校名称。 最后,在步骤 8 中,我们使用.loc索引器根据索引标签选择行,在第一步中将其作为学校名称。 此过滤器仅适用于具有最大值的学校。...如您所见,SAT 成绩栏和大学本科生只有一排具有最大值的行,但是某些种族栏有最大值。 我们的目标是找到具有最大值的第一行。 我们需要再次取累加总和,以使每一列只有一行等于 1。...显示所有公共属性和方法以揭示所有可能的函数(如在步骤 2 中所做的那样)很有用。每个组由元组唯一标识,该元组包含分组列中值的唯一组合。...如您所见,当在其索引上对齐多个数据帧时,concat通常比合并好得多。 在第 9 步中,我们切换档位以关注merge具有优势的情况。merge方法是唯一能够按列值对齐调用和传递的数据帧的方法。
建议先通过 columns 属性查看所有列名,确保拼写无误。缺失值处理不当:info() 可以显示每列非空值的数量。如果存在大量缺失值,需要考虑填充(如用均值、中位数等)、删除或标记为特殊类别。...:确保使用的分组键是唯一的标识符,否则可能导致结果异常。...可以通过 nunique() 检查分组后的唯一性。聚合函数选择不当:不同的业务场景适合不同的统计方法,如求和、计数、最大最小值等。选择不合适可能影响模型性能。...data['age'] = data['age'].astype(int)常见问题有:无效值存在:如果数据中有无法转换的值(如字符串中的字母),会引发 ValueError。应先清理异常值再进行转换。...五、总结通过以上步骤,我们能够利用 Pandas 对客户流失预测项目进行有效的数据处理和分析。当然,在实际工作中还会遇到更多复杂的情况,但掌握好基础的知识点和技巧,可以帮助我们更从容地解决问题。
列别名在结果集中显示为列标题。指定列别名是可选的;始终提供默认值。列别名以指定的字母大小写显示;但是,当在ORDER BY子句中引用时,它不区分大小写。C别名必须是有效的标识符。...字段列和列别名可能具有相同的名称(尽管不可取),或者两个列别名相同。...当ORDER by子句引用此类非惟一列别名时,可能会导致SQLCODE -24“Ambiguous sort column”错误。 列别名与所有SQL标识符一样,不区分大小写。...下面是有效的等价语法: FROM Sample.Person P t-alias名称必须是有效的标识符。 别名可以是分隔的标识符。 t-alias在查询中的表别名之间必须是唯一的。...仅唯一标识查询执行的字段; 要惟一地标识用于显示查询结果集的字段,还必须使用列别名(c-alias)。
遵循以上相同的思路,Mito是一个Jupyter-Lab扩展和Python库,它使得在支持GUI的电子表格环境中操作数据变得超级容易。...该列将添加到当前选定的列旁边。最初,列名将是一个字母表,列的所有值都为零。 编辑新列的内容 单击新列名称(分配的字母表) 将弹出侧边栏菜单,你可以在其中编辑列的名称。...要更新该列的内容,请单击该列的任何单元格,然后输入值。你可以输入一个常量值,也可以根据数据集的现有特征创建值。如果要从现有列创建值,则直接使用要执行的运算符调用列名。...新列的数据类型根据分配的值进行更改。 下面的 GIF 演示了上面提到的所有内容: 删除列 通过单击选择任何列。 单击“Del Col”,该特定列将从数据集中删除。...所有下拉选项,如求和、平均值、中值、最小值、最大值、计数和标准偏差都可用。 选择所有必要的字段后,将获得一个单独的表,其中包含数据透视表的实现。
在开始做数据清洗前,需要对Numpy和Pandas库有基本的理解。 数据清洗 数据清洗名如其意,其过程为标识并修正数据集中不准确的记录,识别数据中不可靠或干扰部分,然后重建或移除这些数据。...下面我将讨论这些不一致的数据: 数据缺失 列值统一处理 删除数据中不需要的字符串 数据缺失 数据缺失原因? 在填写问卷时,人们往往未填全所有必填信息,或用错数据类型。...使用中位数替换缺失值 我们可以使用非数值型值所在列的中位数进行替换,下列中的中位是为3.5。...在将它们视为模型的候选者之前,你只需要具有90%可用功能的记录。...上面的屏幕截图显示了如何从字符串中删除一些字符 soupsubcategory是唯一一个数据类型为'object'的列,所以我们选择了select_dtypes(['object']),我们正在使用
) 所有列的唯一值和计数 选择 df[col] 返回一维数组col的列 df[[col1, col2]] 作为新的数据框返回列 s.iloc[0] 按位置选择 s.loc['index_one'] 按索引选择...=n) 删除所有小于n个非空值的行 df.fillna(x) 用x替换所有空值 s.fillna(s.mean()) 将所有空值替换为均值(均值可以用统计部分中的几乎任何函数替换) s.astype(float...1) 将df1中的列添加到df2的末尾(行数应该相同) df1.join(df2,on=col1,how='inner') SQL类型的将df1中的列与df2上的列连接,其中col的行具有相同的值。...df.describe() 数值列的汇总统计信息 df.mean() 返回所有列的平均值 df.corr() 查找数据框中的列之间的相关性 df.count() 计算每个数据框的列中的非空值的数量 df.max...() 查找每个列中的最大值 df.min() 查找每列中的最小值 df.median() 查找每列的中值 df.std() 查找每个列的标准差 点击“阅读原文”下载此速查卡的打印版本 END.
类别 pd.Categorical Categorical 仅限于 Pandas。 对于唯一值相对较少的对象列很有用。 准备 在此秘籍中,我们将显示数据帧中每一列的数据类型。...随着 Pandas 越来越大,越来越流行,事实证明,对象数据类型对于具有字符串值的所有列来说太通用了。 Pandas 创建了自己的分类数据类型,以处理具有固定数量的可能值的字符串(或数字)列。...关系数据库的一种非常常见的做法是将主键(如果存在)作为第一列,并在其后直接放置任何外键。 主键唯一地标识当前表中的行。 外键唯一地标识其他表中的行。...如果仔细观察,您会发现步骤 3 的输出缺少步骤 2 的所有对象列。其原因是对象列中缺少值,而 pandas 不知道如何处理字符串值与缺失值。 它会静默删除无法为其计算最小值的所有列。...对于所有数据帧,列值始终是一种数据类型。 关系数据库也是如此。 总体而言,数据帧可能由具有不同数据类型的列组成。 在内部,Pandas 将相同数据类型的列一起存储在块中。
: Atlas中的类型(Type)由name唯一标识 类型具有元类型。...: 实体类型的每个实例都由唯一标识符GUID标识。...在此示例中,默认数据库中的“customers”表由GUID“9ba387dd-fa76-429c-b791-ffc338d3c91f”唯一标识。...该实体的值是hive_table类型定义中定义的属性的所有属性名称及其值的映射。 属性值将根据属性的数据类型。...但是,实体类型的实例具有标识(具有GUID值),并且可以从其他实体引用(例如,从hive_table实体引用hive_db实体)。 Struct类型的实例没有自己的标识。
1.Series(序列):Series是Pandas库中的一维标记数组,类似于带标签的数组。它可以容纳任何数据类型,并具有标签(索引),用于访问和操作数据。...2.DataFrame(数据框):DataFrame是Pandas库中的二维表格数据结构,类似于电子表格或SQL中的表。它由行和列组成,每列可以包含不同的数据类型。...DataFrame可以从各种数据源中创建,如CSV文件、Excel文件、数据库等。 3.Index(索引):索引是Pandas中用于标识和访问数据的标签。它可以是整数、字符串或其他数据类型。...可以使用标签、位置、条件等方法来选择特定的行和列。 5.缺失数据处理:Pandas具有处理缺失数据的功能,可以检测、删除或替换数据中的缺失值。...6.数据聚合和分组:Pandas可以通过分组和聚合操作对数据进行统计和汇总。它支持常见的统计函数,如求和、均值、最大值、最小值等。
领取专属 10元无门槛券
手把手带您无忧上云