首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【传感器融合】开源 | EagerMOT在KITTI和NuScenes数据集上的多个MOT任务中,性能SOTA!

EagerMOT: 3D Multi-Object Tracking via Sensor Fusion 原文作者:Aleksandr Kim 内容提要 多目标跟踪(MOT)使移动机器人能够通过在已知的3D...现有的方法依靠深度传感器(如激光雷达)在3D空间中探测和跟踪目标,但由于信号的稀疏性,只能在有限的传感范围内进行。另一方面,相机仅在图像域提供密集和丰富的视觉信号,帮助定位甚至遥远的物体。...在本文中,我们提出了EagerMOT,这是一个简单的跟踪公式,从两种传感器模式集成了所有可用的目标观测,以获得一个充分的场景动力学解释。...使用图像,我们可以识别遥远的目标,而使用深度估计一旦目标在深度感知范围内,允许精确的轨迹定位。通过EagerMOT,我们在KITTI和NuScenes数据集上的多个MOT任务中获得了最先进的结果。

1.8K40

MATLAB神经网络拟合工具箱Neural Net Fitting使用方法

这里有一点需要注意:大家的自变量如果有多个(比如我这里就有data_NDVI与data_Soil两个自变量),需要将这两个自变量合并,放在一个变量X中。...言归正传,我们在上上图中点击“Next”,就可以看到如下所示的数据筛选界面。该界面就是我们用来选择输入数据(自变量)、输出数据(因变量)的地方。...换句话说,就是你的输入与输出数据矩阵中,不同行代表的是不同样本,还是同一样本的不同属性(不同自变量)。   随后,选择“Next”,进入验证集与测试集数据的划分界面。...在这个界面中,我们需要对验证集与测试集数据的比例进行划分(为什么要划分数据这里就不再赘述啦,而且这一个界面的右侧也有每一个数据集合的作用,大家不理解的话参考一下就明白了)。...首先,“Generate Scripts”一栏可以自动生成一个MATLAB代码;有了这个代码,以后我们再想对这个结构的神经网络模型进行训练,就不用再在神经网络拟合工具箱中点来点去了,直接把新的输入数据、

2.4K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    探索性数据分析,Seaborn必会的几种图

    本文从实际需求出发,重点放在数据中多个变量关联性的探索上,依据探索的数据类型为连续型或是离散型,将Seaborn常见的图进行简单分组,既方便记忆,又可以从多种图的比较中意识到何时何地该该使用何种图。...violinplot 小提琴图,结合箱型图与核密度估计绘图,功能与箱型图类似,不同点是其所有绘图单元都与实际数据点相对应,描述了基础数据分布的核密度估计,但请记住,估计过程受样本大小的影响,小样本估计具有误导性...,因此,一般用于较大数据集。...参数说明: 与箱型图完全一致,代码部分只把绘图函数由boxplot改为violinplot。 boxenplot 增强箱型图,适用于大数据集,相对于普通的箱型图,绘制出了更多的百分位点分布情况。...lineplot 线图,将自变量和因变量生成的点用线连接起来。

    3.4K31

    统计学 方差分析_python编写计算方差的函数

    一、理论学习 1.0、概念 1、方差分析(ANOVA)用于研究一个或多个分类型自变量与一个数值型因变量的关系。...方差分析通过检验多个总体(同属于一个大整体)的均值是否相等来判断一个或多个分类型自变量对数值型因变量是否由显著影响。...观测值:每个因子水平下的样本观测值。例如:六年级三个班各自的学生成绩。 1.1、单因素方差分析 1.1.1、概念理解 1、单因素方差分析就是只有一个因子自变量对因变量的影响。...二、python实现方差分析 数据集来自于我们老师的课后作业 背景:数据集展示了已迁离北京的高学历外来人口现在的月收入、教育程度和职业数据。...data=df,ax=ax[0]) # ax[i] 表示第i个子图 ax1.set_title('教育程度—收入对数箱线图',size=12) ax2 = sns.boxplot(x='career'

    1K20

    R语言预处理之异常值问题

    通过聚类的方法检验异常值 4. 检验时间序列数据里面的异常值 >>>> 三、R代码实现 1、单变量异常值检测 这一节主要讲单变量异常值检测,并演示如何将它应用到多元(多个自变量)数据中。...使用函数boxplot.stats()实现单变量检测,该函数根据返回的统计数据生成箱线图。在上述函数的返回结果中,有一个参数out,它是由异常值组成的列表。...更明确的说就是里面列出了箱线图中箱须线外面的数据点。其中参数coef可以控制箱须线从箱线盒上延伸出来的长度,关于该函数的更多细节可以通过输入‘?boxplot.ststs’查看。 画箱线图: ? ?...上面的代码中,prcomp()实现对数据集iris2的主成分分析,biplot()取主成分分析结果的前两列数据也就是前两个主成分绘制双标图。...使用鸢尾花数据集,结合k均值算法进行异常值检验的代码如下: ? 4、检测时间序列中的异常值 本节介绍如何从时间序列数据中检测出异常值。

    1.7K100

    数据科学通识第八讲:数据可视化

    它的优点是: 可以展示数据的分布和聚合情况 适合展示较大的数据集 通过反映数据在一个有序的因变量上的变化,来反映事物随类别而变化的趋势 下面我们介绍单一和分组的概念。...我们可以通过对性别进行分组,来保证在一个二维的平面直角坐标系中呈现具有多个自变量的情况的数据。 折线图 折线图用于显示随时间或某种有序的类别而变化的趋势。...饼图适用于用户更关注于简单占比的情况。它的特点也是简单直观,很容易看到组成成分的占比。 箱线图 箱线图,又称盒须图、盒式图或盒状图,是一种显示一组数据分散情况的统计图,特别方便用于异常值的检测。...这三种花型在花萼的长度、宽度以及花瓣的长度和宽度这四个特征上具有不同的分布特点,通过这样的一个箱线图便可以直观地表达。 箱线图特别适合于观察数据总体分布的场景。...从图中我们可以观察到数据的分位数等统计信息,并且可以大致判断数据的分布形态、识别数据中的异常值。它的优点是,当比较多个数据集的分布时,它所占用的空间相对较小,且可以观测到数据的许多信息。

    1.3K20

    Python线性混合效应回归LMER分析大鼠幼崽体重数据、假设检验可视化|数据分享

    混合效应回归作为GLM的扩展,能够有效处理这类具有层次结构的数据,如聚类数据、重复测量数据和纵向数据等。...一般线性回归方程为: 其中,XX 是一个 N×pN×p 的设计矩阵,包含每个个体(NN)对于模型中每个自变量(pp)的观测值;ββ 是一个 p×1p×1 的列向量,包含模型中每个自变量的回归系数;ϵϵ...固定因素是研究感兴趣的自变量,如治疗类别、性别等;随机因素是分析单位所属的分类变量,通常定义了第2层、第3层或更高层级。...Python实现混合效应回归 (一)数据准备 本研究使用的数据集,旨在比较不同窝中大鼠幼崽的出生体重(查看文末了解数据免费获取方式)。..., 图6 RVF图 图7 残差按窝的箱线图 正式的White’s拉格朗日乘数异方差检验: t p-value"\] for key, val in dict(zip(labels, het\_white

    9200

    python生态系统中的线性回归

    只能估计和推断关于从中生成数据的分布。 因此,真实误差的代表是残差,它们只是观测值与拟合值之间的差。 底线-需要绘制残差,检查其随机性质,方差和分布,以评估模型质量。...残差与自变量的关系图 接下来,可以对残差与每个自变量的关系作图,以寻找独立性假设。如果残差在零个x轴周围均匀地随机分布并且没有形成特定的簇,则该假设成立。在这个特定问题中,观察到一些簇。...标准化残差的直方图和QQ图 要检查数据生成过程的正态性假设,可以简单地绘制标准化残差的直方图和QQ图。 此外,可以对残差进行Shapiro-Wilk检验,以检查正态性。...方差影响因子— VIF 此数据集的OLS模型摘要显示了多重共线性警告。但是,如何检查是什么原因引起的呢? 可以计算每个独立变量的方差影响因子。...它是具有多个项的模型的方差除以仅具有一个项的模型的方差的比率。同样,利用statsmodels 中的特殊异常值影响类。

    1.9K20

    基于Spark的机器学习实践 (七) - 回归算法

    [mqic6czuv1.png] 2 线性回归算法概述 2.1 线性回归简介 ◆ 在回归分析中,自变量与因变量之间满足或基本满足线性关系,可以使用线性模型进行拟合 ◆ 如回归分析中,只有一个自变量的即为一元线性回归...以便能够使预测错误的天数减少,也就是降低损失函数值,同时,也提高了预测的准确率 3.3 再谈线性回归 ◆ 线性回归是最简单的数学模型之一 ◆ 线性回归的步骤是先用既有的数据,探索自变量X与因变量Y之间存在的关系...,同时,在SGD的基础上引入了”动量”的概念,从而进一步加速收敛速度的优化算法也陆续被提出 6 实战Spark预测房价 - 项目展示及代码概览 代码 [6f5cu3ui03.png]数据加载及转换 数据集文件...,就是在训练过程中,将训练数据集拆分为训练集和验证集两个部分 训练集专用训练模型 验证集只为检验模型预测能力 当二者同时达到最优,即是模型最优的时候 [34nsdlpng3.png] 8.4 正则化原理...它可被视为顺序限制约束的最小二乘问题。基本上保序回归是最适合原始数据点的单调函数。

    2.2K40

    学会这7个绘图工具包,Matplotlib可视化也没那么难

    表1 pyplot的基础语法及常用参数 ? 散点图 散点图通常用在回归分析中,描述数据点在直角坐标系平面上的分布。散点图表示因变量随自变量而变化的大致趋势,据此可以选择合适的函数对数据点进行拟合。...下面我们以Kaggle经典比赛案例泰坦尼克号数据集为例,绘制乘客年龄的频数直方图,查看各年龄段乘客的年龄分布情况,如代码清单5所示,其可视化结果如图5所示。...图5 直方图 箱形图 箱形图又称为盒须图、盒式图或箱线图,是一种用于显示一组数据分散情况的统计图,因形状如箱子而得名。它主要用于反映原始数据分布的特征,也可以进行多组数据分布特征的比较。...箱形图的主要参数及说明如表7所示。 表7 箱形图的主要参数及说明 ? 下面绘制箱形图,如代码清单6所示。...图7 水平箱形图 组合图 前面介绍的都是在figure对象中创建单独的图像,有时候我们需要在同一个画布中创建多个子图或者组合图,此时可以用add_subplot创建一个或多个subplot来创建组合图,

    2.9K30

    利用SPSS进行神经网络分析过程及结果解读

    神经网络在系统辨识、模式识别、智能控制等领域有着广泛而吸引人的前景,特别在智能控制中,人们对神经网络的自学习功能尤其感兴趣,并且把神经网络这一重要特点看作是解决自动控制中控制器适应能力这个难题的关键钥匙之一...本例通过几个自变量预测是否有高血压,2个分类变量,一个性别,一个吸烟;3个连续性变量。   需要生成一个分组变量,用于区分训练集以及验证集。我们这个样本70%用于训练。通过计算变量,生成分组变量。...参数设置   点击分区,选择生成的分组变量:   点击输出,选择如下参数:   点击保存,勾选预测值和预测概率   点击导出,可以保存相应模型,用于新数据的预测。   ...结果浏览:   首先是对训练集合检验集的描述 网络信息对神经网络的输入层,隐藏层以及输出层进行描述。 下图为程序运行后的神经网络图,线条的粗细代表了权重的大小。...模型摘要以及分类对具体的分类结果以及预测模型的分类结果进行了比较 校准箱型图 ROC曲线下面积评估模型好坏   自变量对模型的重要性排行

    88210

    基于Spark的机器学习实践 (七) - 回归算法

    线性回归简介 ◆ 在回归分析中,自变量与因变量之间满足或基本满足线性关系,可以使用线性模型进行拟合 ◆ 如回归分析中,只有一个自变量的即为一元线性回归,其自变量与因变量之间的关系可以用一条直线近似表示...3.2 何为好的预测效果?...◆ 学习率决定了梯度下降的速度,同时,在SGD的基础上引入了”动量”的概念,从而进一步加速收敛速度的优化算法也陆续被提出 6 实战Spark预测房价 - 项目展示及代码概览 代码 数据加载及转换...,就是在训练过程中,将训练数据集拆分为训练集和验证集两个部分 训练集专用训练模型 验证集只为检验模型预测能力 当二者同时达到最优,即是模型最优的时候 8.4 正则化原理 ◆ 我们在前面的示例中可以看到...由此产生的函数称为保序回归。 它可被视为顺序限制约束的最小二乘问题。基本上保序回归是最适合原始数据点的单调函数。

    98210

    分享一个能够写在简历里的企业级数据挖掘实战项目

    项目内容: 探索数据分布,缺失情况,针对性的进行缺失值填补,对于缺失较少的重要特征选择随机森林缺失填补法,使用3sigma、箱型图分析等对异常值进行处理,对分类型变量进行编码。...下⾯我们就对每个x生成⼀个对象、记录IV值、生成WOE图。此处代码需要运⾏⾃定义函数所在⽂件,若有需要,可关注「数据STUDIO」并回复【210514】获取哦!每个x变量运行结果如下。...作为维度输入和其他维度一起做输入变量,为数据挖掘和分析建模提高基础。 数据预处理 在特征选择方面,我们在之前的特征基础上添加了一些我们认为与客户价值有关的变量。...对特征进行缺失值分析得到: 同样对数据进行深入探索,因为本次价值模型无需划分测试集和训练集,又数据量足够多,因此我们直接将有缺失值的记录删除。...自变量数量少或降维后得到了二维变量(包括预测变量)——直接使用散点图,发现自变量和因变量之间的相互关系,然后再选择最佳回归方法 自变量间有较强共线性关系——岭回归,L2正则化,对多重共线性灵活处理的方法

    1.6K30

    分享一个能够写在简历里的企业级数据挖掘实战项目

    项目内容: 探索数据分布,缺失情况,针对性的进行缺失值填补,对于缺失较少的重要特征选择随机森林缺失填补法,使用3sigma、箱型图分析等对异常值进行处理,对分类型变量进行编码。...下⾯我们就对每个x生成⼀个对象、记录IV值、生成WOE图。此处代码需要运⾏⾃定义函数所在⽂件,若有需要,可关注「数据STUDIO」并回复【210514】获取哦!每个x变量运行结果如下。...作为维度输入和其他维度一起做输入变量,为数据挖掘和分析建模提高基础。 数据预处理 在特征选择方面,我们在之前的特征基础上添加了一些我们认为与客户价值有关的变量。...对特征进行缺失值分析得到: 同样对数据进行深入探索,因为本次价值模型无需划分测试集和训练集,又数据量足够多,因此我们直接将有缺失值的记录删除。...自变量数量少或降维后得到了二维变量(包括预测变量)——直接使用散点图,发现自变量和因变量之间的相互关系,然后再选择最佳回归方法 自变量间有较强共线性关系——岭回归,L2正则化,对多重共线性灵活处理的方法

    1.8K31

    移动通信客户价值数据挖掘分析实战

    比如,可以考虑消费者的消费行为,主要包括该用户在各项通信及增值业务上的花费。...box_variable].dropna() for value in data[grouping_variable].value_counts().index] # 构造用于制作箱形图的数据...# 用未标准化数据拟合模型:如自变量为x_var_cons, # 则拟合含截距模型;如自变量为x_var,则拟合不含截距模型 pvalues[new_column...对于分类数据,主要观察柱状图的左右对称性。 本数据集全为连续数据,没有分类数据。...对于本案例,先将"利润环比增长率"因变量按升序排序,把其前27%的数据划为低价值组(303个样本),把其后27%的数据划为高价值组(303个样本),然后对每一个自变量做分组箱形图,分组箱形图可以直观的展示出因变量与自变量之间的关系

    2K31

    从零开始学机器学习——逻辑回归

    比如下面这种图: 开始练习 我们还使用之前的南瓜数据集进行模型训练。为了确保数据的质量和可靠性,首先需要对数据集进行适当的清理。具体而言,我们会删除所有空值,以避免缺失数据对模型训练造成的不利影响。...这种类型的变量被称为“分类数据”,因此需要采用更专业和有效的方法来进行可视化。 此外,还有许多其他技术和工具可以用来展示该类别与其他变量之间的关系,例如箱线图、条形图和小提琴图等。...小提琴图可以是一种单次显示多个数据分布的有效且有吸引力的方式,但请记住,估计过程受样本大小的影响,相对较小样本的小提琴可能看起来非常平滑,这种平滑具有误导性。如果还不懂的话,我们可以拿身高举例。...它提供了一些关键指标,帮助你理解模型在测试集上的表现,你可以看到传了两个参数,一个是实际结果的y_test,另一个是我们训练模型根据测试集推测出来的测试结果。拿来作比较。...此外,在数据处理和可视化过程中,我们运用了多种工具,如并列网格、小提琴图等,这些工具不仅帮助我们分析数据之间的关系,也增强了数据的直观性和可理解性。

    49860

    Python中最常用的 14 种数据可视化类型的概念与代码

    分组条形图 当数据集具有需要在图形上可视化的子组时,将使用分组条形图。...其中一个轴定义了自变量。另一个轴包含一个依赖于它的变量。 多线图 多条线图包含多条线。它们代表数据集中的多个变量。这种类型的图表可用于研究同一时期的多个变量。...复合折线图也可以称作堆叠面积图,堆叠面积图和基本面积图一样,唯一的区别就是图上每一个数据集的起点不同,起点是基于前一个数据集的,用于显示每个数值所占大小随时间或类别变化的趋势线,展示的是部分与整体的关系...箱形图又称盒须图、盒式图或箱线图,是利用数据中的五个统计量:最小值、第一四分位数、中位数、第三四分位数与最大值来显示一组数据分布情况的统计图。...小提琴图 一般来说,小提琴图是一种绘制连续型数据的方法,可以认为是箱形图与核密度图的结合体。当然了,在小提琴图中,我们可以获取与箱形图中相同的信息。

    9.6K20

    揭开因果图模型的神秘面纱:常用的因果图模型

    1.常见的因果图模型对比下面师一些常用的因果图模型,并且师严格意义上的因果图模型,依据各标准进行对比,并以表格形式输出如下:模型名称因果方向有向无环图(DAG)混杂因素控制前门/后门准则模型假设与数据支持潜在变量识别因果路径复杂度时间顺序单向因果关系模型...步骤:识别多个自变量(X1, X2, X3)和一个因变量(Y)。确定每个自变量对因变量的直接影响。使用图示表示这些关系。...应用场景:基因、蛋白质和代谢途径的相互作用、社会、经济和文化因素对行为的综合影响。步骤:识别多个自变量、中间变量和因变量。确定每个变量之间的因果关系,可能存在多个层次。使用图示表示这些关系。...异常值检测和纠正:使用统计方法检测和纠正数据中的异常值,避免异常值对分析结果的影响。例如,使用箱线图识别和处理实验数据中的异常测量值。...应用:适用于线性非高斯模型的数据集。示例:使用LiNGAM算法分析金融数据,推断金融变量之间的因果关系。

    1.4K10

    Matplotlib可视化没那么难:7种常用图表最全绘制攻略来了!

    散点图表示因变量随自变量而变化的大致趋势,据此可以选择合适的函数对数据点进行拟合。在广告数据分析中,我们通常会根据散点图来分析两个变量之间的数据分布关系。散点图的主要参数及其说明如下。...:直方图的边界色 下面我们以Kaggle经典比赛案例泰坦尼克号数据集为例,绘制乘客年龄的频数直方图,查看各年龄段乘客的年龄分布情况,如代码清单5所示,其可视化结果如图5所示。...▲图5 直方图 06 箱形图 箱形图又称为盒须图、盒式图或箱线图,是一种用于显示一组数据分散情况的统计图,因形状如箱子而得名。它主要用于反映原始数据分布的特征,也可以进行多组数据分布特征的比较。...▲图7 水平箱形图 07 组合图 前面介绍的都是在figure对象中创建单独的图像,有时候我们需要在同一个画布中创建多个子图或者组合图,此时可以用add_subplot创建一个或多个subplot来创建组合图...,或者通过subplot使用循环语句来创建多个子图。

    6.6K31

    Seaborn + Pandas带你玩转股市数据可视化分析

    散点图看相关性 散点图表示因变量(Y轴数值)随自变量(X轴数值)变化的大致趋势,从而选择合适的函数对数据点进行拟合;散点图中包含的数据越多,比较的效果也越好。...结构化多绘图网格 当您想要在数据集的子集中分别可视化变量的分布或多个变量之间的关系时,FacetGrid[1]类非常有用。一个FacetGrid可以与多达三个维度可以得出:row,col,和hue。...小提琴图 小提琴图是箱线图与核密度图的结合,箱线图展示了分位数的位置,核密度图则展示了任意位置的密度,通过小提琴图可以知道哪些位置的数据点聚集的较多,因其形似小提琴而得名。...其外围的曲线宽度代表数据点分布的密度,中间的箱线图则和普通箱线图表征的意义是一样的,代表着中位数、上下分位数、极差等。细线代表 置信区间。...滞后图 滞后图用于检查数据集或时间序列是否随机。随机数据在滞后图中不应显示任何结构。非随机结构意味着基础数据不是随机的。

    6.8K40
    领券