首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

用机器学习来预测天气Part 2

这篇文章我们将使用上一篇文章处理好的数据,建立线性回归模型来预测天气。为了建立线性回归模型,我要用到python里非常重要的两个机器学习相关的库:Scikit-Learn和StatsModels 。...第三篇文章我们将使用google TensorFlow来建立神经网络模型,并把预测的结果和线性回归模型的结果做比较。...使用逐步回归建立一个健壮的模型   一个强大的线性回归模型必须选取有意义的、重要的统计指标的指标作为预测指标。 为了选择统计上显着的特征,我将使用Python statsmodels库。...然而,在使用statsmodels库之前,我想先说明采取这种方法的一些理论意义和目的。   在分析项目中使用统计方法(如线性回归)的一个关键方面是建立和测试假设检验,以验证所研究数据假设的重要性。...对于他们的完整解释,我会推迟到高级回归教科书,如Kutner的应用线性回归模型,第五版。 以及statsmodels文件。

2.1K60

基于Spark的机器学习实践 (七) - 回归算法

线性回归简介 ◆ 在回归分析中,自变量与因变量之间满足或基本满足线性关系,可以使用线性模型进行拟合 ◆ 如回归分析中,只有一个自变量的即为一元线性回归,其自变量与因变量之间的关系可以用一条直线近似表示...◆ 同理,对于多变量的回归称为多元线性回归,其可以用一个平面或超平面来表示 2.2 使用线性回归的前提条件 ◆ 自变量与因变量之间具有线性趋势,在前面介绍过相关系数 ◆ 独立性 因变量之间取值相互独立...以便能够使预测错误的天数减少,也就是降低损失函数值,同时,也提高了预测的准确率 3.3 再谈线性回归 ◆ 线性回归是最简单的数学模型之一 ◆ 线性回归的步骤是先用既有的数据,探索自变量X与因变量Y之间存在的关系...数据集文件 - Price降序排列 由于训练集有序,为提高准确率,应打乱顺序-shuffle 预测结果 7 逻辑回归算法及原理概述 7.1 线性 VS 非线性 ◆ 线性简言之就是两个变量之间存在一...次方函数关系 ◆ 自然界中变 量间更多的关系是非线性的,绝对的线性关系相对很少 ◆ 因此,在选择数学模型进行拟合的时候,很多情况使用非线性函数构造的模型可能比线性函数模型更好 7.2 逻辑回归 ◆ 逻辑回归即

98210
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于Spark的机器学习实践 (七) - 回归算法

    [mqic6czuv1.png] 2 线性回归算法概述 2.1 线性回归简介 ◆ 在回归分析中,自变量与因变量之间满足或基本满足线性关系,可以使用线性模型进行拟合 ◆ 如回归分析中,只有一个自变量的即为一元线性回归...,其自变量与因变量之间的关系可以用一条直线近似表示 ◆ 同理,对于多变量的回归称为多元线性回归,其可以用一个平面或超平面来表示 2.2 使用线性回归的前提条件 ◆ 自变量与因变量之间具有线性趋势,在前面介绍过相关系数...以便能够使预测错误的天数减少,也就是降低损失函数值,同时,也提高了预测的准确率 3.3 再谈线性回归 ◆ 线性回归是最简单的数学模型之一 ◆ 线性回归的步骤是先用既有的数据,探索自变量X与因变量Y之间存在的关系....png] ◆ 上式分别为一元线性回归与写成矩阵形式的线性回归模型 4 最小二乘法 4.1 何为最小二乘法 ◆ 又称最小平方法,通过最小化残差平方和来找到最佳的函数匹配 ◆ 即最小二乘法以残差的平方和作为损失函数...VS 非线性 ◆ 线性简言之就是两个变量之间存在一 次方函数关系 ◆ 自然界中变 量间更多的关系是非线性的,绝对的线性关系相对很少 ◆ 因此,在选择数学模型进行拟合的时候,很多情况使用非线性函数构造的模型可能比线性函数模型更好

    2.2K40

    【机器学习】在【Pycharm】中的应用:【线性回归模型】进行【房价预测】

    引言 线性回归(Linear Regression)是一种常见的统计方法和机器学习算法,用于根据一个或多个特征变量(自变量)来预测目标变量(因变量)的值。...3.1 创建CSV文件 你可以使用任何文本编辑器(如Notepad、Sublime Text、VS Code等)创建一个house_prices.csv文件,并将以下数据粘贴进去: square_footage...5.2 创建线性回归模型 使用Scikit-Learn库中的LinearRegression类来创建线性回归模型。...from sklearn.linear_model import LinearRegression # 创建线性回归模型 model = LinearRegression() 线性回归模型是一种线性方法...结论 在Pycharm中使用线性回归模型时,需要注意以下几点: 环境设置:确保安装正确版本的Pycharm和必要的Python库。 数据质量:确保数据集没有缺失值和异常值,且数据类型正确。

    24910

    天气预报 :天气数据集爬取 + 可视化 + 13种模型预测

    目录 1 天气数据集爬取 2 数据可视化 3 模型预测数据 3.1 单变量线性回归 模型一:单变量线性回归模型 3.2 多变量线性回归 模型二:基于LinearRegression实现的多变量线性回归模型...模型三:基于成本函数和梯度下降实现的多变量线性回归模型 3.3 以"线性回归"的方式来拟合高阶曲线 模型四:一阶线性拟合 模型五:二阶曲线拟合 模型六:三阶曲线拟合 3.4 线性回归预测天气 模型七:...可通过残差(residuals)和R方(r-squared)判断, 在Python中如何对单变量线性回归模型的效果进行评估 手动计算 假设hpyTrain代表针对训练数据的预测最高气温值,hpyTest...实现的多变量线性回归模型 与单变量线性回归类似,但要注意训练数据此时是(是训练数据条数,是自变量个数) 针对测试数据的预测结果,其R方约为0.466,这时我们发现还没有单变量量线性回归R方值大,说明拟合效果差于单变量线性回归...3.4 线性回归预测天气 模型七:线性回归预测模型 使用sklearn.linear_model.LinearRegression处理 无需对自变量进行归一化处理,也能得到一致的结果。

    14.9K43

    Python数据挖掘指南

    让我们来看看如何使用Python来使用上述两种数据挖掘算法执行数据挖掘:回归和 聚类。 ---- 2、在Python中创建回归模型 我们想解决的问题是什么?...在我们上面的多元回归输出中,我们了解到通过使用额外的自变量,例如卧室的数量,我们可以提供更好地拟合数据的模型,因为此回归的R平方已增加到0.555。...使用Seaborn可视化线性关系 - 本文档提供了具体示例,说明如何修改回归图,并显示您可能不知道如何自行编码的新功能。它还教你如何适应不同类型的模型,如二次或逻辑模型。...3、在Python中创建聚类模型 我们希望为一组数据对象创建自然分组,这些数据对象可能未在数据本身中明确说明。我们的分析将使用黄石公园着名间歇泉Old Faithful喷发的数据。...我希望通过查看上面的集群和线性回归模型的代码和创建过程,您已经了解到数据挖掘是可以实现的,并且可以使用有效数量的代码完成。

    94600

    python生态系统中的线性回归

    线性回归是预测定量响应的简单实用工具。回归的总体思路是检查两件事。首先,它检查一组独立变量(X)是否能很好地预测结果变量(Y)。...在数学上,线性回归估计线性回归函数,定义为: y = c + b * x + b 其中y =估计因变量得分,c =常数,b =回归系数,x =自变量得分。...线性回归假设的简要概述 对于多元线性回归,从统计推断角度来看,判断多重共线性(相关变量)也很关键。该假设假设预测变量之间的线性相关性很小或没有。...最重要的是,它接受R样式的公式来构造完整或部分模型(即,包含所有或一些自变量)。 在大数据时代,为什么要费心创建局部模型而不将所有数据都放入其中?...拟合优度测试 https://www.statsmodels.org/stable/stats.html#goodness-of-fit-tests-and-measures 结论 在本文中,介绍了如何为线性回归中的模型质量评估添加必要的视觉分析

    1.9K20

    如何在Python中为长短期记忆网络扩展数据

    完成本教程后,你将知道: 如何归一化和标准化Python中的数据序列。 如何为输入和输出变量选择适当的缩放比例。 缩放顺序数据时的实际考虑。 让我们开始吧。...然后,我们可以将任何值(如18.8)归一化,如下所示: y = (x - min) / (max - min) y = (18.8 - (-10)) / (30 - (-10)) y = 28.8 /...在输出层上最好使用softmax激励函数。此外,输出值将是0到1之间的实际值,可以得到准确的值。 回归问题 如果你的问题是一个回归问题,那么输出将是一个实际值。这时最好使用线性激励函数的模型。...保存用于文件的系数,当你需要再次进行预测并缩放新数据时加载它们。 数据分析。使用数据分析来帮助你更好地了解数据。例如,简单的直方图可以帮助你快速了解数量分布的情况,以确定标准化是否合理。...具体来说,你了解到: 如何归一化和标准化Python中的数据序列。 如何为输入和输出变量选择适当的缩放比例。 缩放数据序列时的实际考量。

    4.1K70

    R语言贝叶斯MCMC:用rstan建立线性回归模型分析汽车数据和可视化诊断|附代码数据

    Stan与最流行的数据分析语言,如R、Python、shell、MATLAB、Julia和Stata的接口。我们将专注于在R中使用Stan。rstanrstan允许R用户实现贝叶斯模型。...包含你的Stan程序的.stan文件的路径。data。一个命名的列表,提供模型的数据。例子作为一个简单的例子来演示如何在这些包中指定一个模型,我们将使用汽车数据来拟合一个线性回归模型。...我们的因变量是mpg,所有其他变量是自变量。mtcars %>%  head()首先,我们将拟合模型。对于线性回归,我们使用stan函数。...下面是我们模型的stan代码,保存在一个名为stan的文件中(你可以在RStudio中创建一个.stan文件,或者使用任何文本编辑器,并保存扩展名为.stan的文件)。...stan()函数要求将数据作为一个命名的列表传入,其中的元素是你在数据块中定义的变量。对于这个程序,我们创建一个元素为N、K、X和Y的列表。

    2.1K00

    【线性回归分析】:基于实验数据的模型构建与可视化

    线性回归分析:基于实验数据的模型构建与可视化 在数据分析领域,线性回归是一种基础而强大的工具,用于探究两个或多个变量之间的关系。...通过给定的数据集,我们可以构建一个线性模型来预测目标变量(y)如何随着输入变量(x)的变化而变化。...CV九段手将演示如何使用Python中的NumPy和Matplotlib库读取数据、计算线性回归参数,并可视化结果。...最近啊,我的机器学习老师也是开始布置实验了,一个简单的线性回归显式求解公式,构建线性回归模型,并可视化。 1. 数据准备 首先,我们需要从文件x-y.txt中读取数据。...在这种情况下,数据可以分为训练集和测试集,通过使用线性回归或移动平均法等模型,研究人员可以创建一个有效的预测系统。 构建预测模型 在数据分析过程中,选择合适的模型是成功的关键。

    18510

    ML Mastery 博客文章翻译 20220116 更新

    Python 从零开始创建算法测试工具 通过创建机器学习算法的目标列表来获得控制权 机器学习中算法和模型的区别 停止从零开始编写机器学习算法 在实现机器学习算法时,不要从开源代码开始 不要使用随机猜测作为基线分类器...模型 如何开始用于时间序列预测的深度学习(7 天迷你课程) 如何为时间序列预测网格搜索深度学习模型 如何为单变量时间序列预测网格搜索朴素方法 如何在 Python 中为时间序列预测搜索 SARIMA...消息 如何开始将 Python 用于机器学习 如何使用 Python 和 Scikit-Learn 加载数据 如何为机器学习将 NumPy 数组保存到文件中 Python 中概率评分方法的简要介绍 如何用...回归模型 如何在 Python 中开发 LASSO 回归模型 Python 线性判别分析 如何使用 Python 3 为机器学习开发创建 Linux 虚拟机 如何在 Python 中加载机器学习数据 用于评估机器学习算法的...Machine Learning Mastery 时间序列入门教程 如何在 Python 中为时间序列预测创建 ARIMA 模型 Python 中用于时间序列预测的自回归模型 如何为时间序列预测回测机器学习模型

    3.4K30

    【数学建模】——【新手小白到国奖选手】——【学习路线】

    : 线性回归:用于预测连续型变量,假设因变量与自变量之间存在线性关系。...(predictions) 多项式回归:适用于因变量与自变量之间存在非线性关系的情况。...: 使用线性回归模型进行训练和预测。...第二阶段:数学建模基础 数学建模入门:了解数学建模的基本概念和步骤,学习经典数学模型如优化问题(线性规划、整数规划)、回归分析(线性回归、多项式回归)和时间序列分析(ARIMA模型)。...编程实现:用Python实现简单的数学模型,如线性回归和多项式回归。通过数据预处理、模型训练、预测和评估,掌握从理论到实践的完整流程。

    1.1K10

    机器学习中的线性回归

    机器学习中的线性回归 简介 线性回归是机器学习领域中最简单而有效的模型之一。它用于建立自变量(输入)和因变量(输出)之间的线性关系。在实际应用中,线性回归广泛用于预测、分析和建模。...通过分析历史销售数据,他们可以建立一个模型,考虑因素如季节性、促销活动和市场趋势,以便更好地管理库存和优化供应链。 2. 金融领域 金融公司可能使用线性回归来评估贷款申请的信用风险。...通过考虑患者的健康状况、疾病历史和其他变量,他们可以制定更有效的治疗计划和资源分配。 Python 代码演示 下面是一个使用 Python 进行线性回归的简单示例。...') plt.show() 以上代码演示了如何创建一个简单的线性回归模型,将数据拆分为训练集和测试集,并绘制原始数据及拟合的回归线。...考虑因素如市场指数、公司业绩等,可以帮助他们制定投资策略。 3. 营销效果分析 营销团队可以使用线性回归来分析广告投放对销售的影响。这有助于优化广告预算和选择最有效的营销渠道。 模型评估与调优 1.

    9610

    统计建模——模型——python为例

    1.线性回归模型: 应用方式:用于研究一个连续因变量与一个或多个自变量之间的线性关系。通过对数据进行拟合,确定自变量对因变量的影响程度(系数),并可以用来预测给定自变量值时因变量的期望值。...----python实现线性回归模型 在Python中实现线性回归模型有多种方式,包括使用基本的数学库如NumPy进行手动实现,或者利用高级的机器学习库如Scikit-Learn、TensorFlow和...python实现逻辑回归模型 在Python中实现逻辑回归模型,除了可以使用高级机器学习库如Scikit-Learn之外,也可以手动实现逻辑回归算法。...python实现统计建模泊松回归与负二项回归 在Python中实现泊松回归和负二项回归,可以使用statsmodels库,因为它提供了广义线性模型(GLM)的实现,这包括泊松回归和负二项回归。...(计数数据)和自变量的数据框 # df['count'] 是因变量,df[['var1', 'var2']] 是自变量列表 # 示例数据创建,实际情况中应该从csv文件或其他来源加载数据 np.random.seed

    17210

    如何规避线性回归的陷阱(下)

    前文回顾:如何规避线性回归的陷阱(上) 使用变量变换或广义线性模型 线性回归假设输出变量来自正态分布。也就是说,它是对称的,连续的,并且定义在整个数轴上。 实际上,违反后两个特征并不是什么大事。...如果我们尝试用线性回归模型来拟合这些数据,使用年和月作为我们的输入变量,我们将得到如下所示的红线,这条红线对我们的数据的拟合不太理想: # Create year and month variables...一旦我们取了数据的d差,然后我们将得到的转换输出变量建模为y(t)的p立即先验观测值和q立即先验模型残值(即y(t)的实际值和预测值之间的差)的线性组合。...对于回归问题,通常最简单的模型是线性回归模型。然而,在许多情况下,违反一个或多个严格的线性回归假设会使使用此模型不合适。...在本文中,我们为线性回归假设提供了一些解决方案,这些假设允许您继续使用这种高度通用且易于理解的模型(或相关模型,如glms或时间序列模型),然后再继续使用资源匮乏的黑盒技术,如神经网络。

    73720

    入门 | 如何为你的回归问题选择最合适的机器学习方法?

    那么,如何为这些回归问题选择最合适的机器学习算法呢?...sklearn中也存在线性回归的算法库的接口,代码示例如下所示: #加载线性模型算法库 from sklearn import linear_model # 创建线性回归模型的对象 regr = linear_model.LinearRegression...() # 利用训练集训练线性模型 regr.fit(X_train, y_train) # 使用测试集做预测 y_pred = regr.predict(X_test) 2、岭回归 上述的线性回归算法使用最小二乘法优化各个系数...#加载线性模型算法库 from sklearn.linear_model import Ridge # 创建岭回归模型的对象 reg = Ridge(alpha=.5) # 利用训练集训练岭回归模型 reg.fit...在数据标签是连续变量而不是离散变量的情况下,可以使用KNN回归。

    61020

    如何为回归问题选择最合适的机器学习方法?

    1、线性回归 线性回归拟合一个带系数的线性模型,以最小化数据中的观测值与线性预测值之间的残差平方和。...sklearn中也存在线性回归的算法库的接口,代码示例如下所示: #加载线性模型算法库from sklearn import linear_model# 创建线性回归模型的对象regr = linear_model.LinearRegression...()# 利用训练集训练线性模型regr.fit(X_train, y_train)# 使用测试集做预测y_pred = regr.predict(X_test) 2、岭回归 上述的线性回归算法使用最小二乘法优化各个系数...#加载线性模型算法库from sklearn.linear_model import Ridge# 创建岭回归模型的对象reg = Ridge(alpha=.5)# 利用训练集训练岭回归模型reg.fit...在数据标签是连续变量而不是离散变量的情况下,可以使用KNN回归。

    74410

    Keras 中神经网络模型的 5 步生命周期

    在 Python 中创建和评估深度学习神经网络非常容易,但您必须遵循严格的模型生命周期。...在这篇文章中,您将发现在 Keras 中创建,训练和评估深度学习神经网络的逐步生命周期,以及如何使用训练有素的模型进行预测。...如何为回归和分类预测建模问题选择标准默认值。 如何将它们结合在一起,在 Keras 开发和运行您的第一个多层感知器网络。 让我们开始吧。...例如,下面是一些常见的预测建模问题类型以及可以在输出层中使用的结构和标准激活函数: 回归:线性激活函数或'线性'和与输出数匹配的神经元数。...如何为分类和回归问题选择激活函数和输出层配置。 如何在 Keras 开发和运行您的第一个多层感知器模型。 您对 Keras 中的神经网络模型有任何疑问吗?在评论中提出您的问题,我会尽力回答。

    1.9K30

    【机器学习】在【PyCharm中的学习】:从【基础到进阶的全面指南】

    第一步:基础准备 1.1 Python基础 1.1.1 学习Python的基本语法 变量和数据类型: 学习如何声明变量,理解Python的弱类型特性。...选择项目位置和Python解释器,点击“Create”创建项目。 管理项目: 理解PyCharm的项目结构,包括项目视图、文件导航、工具窗口等。 学习如何创建Python文件、包和虚拟环境。...模型使用sigmoid函数将线性回归的结果映射到(0,1)区间。...模型选择和训练 根据问题的类型(如分类、回归等),选择合适的机器学习模型进行训练。常见的模型包括: 线性回归:用于解决回归问题,预测连续型变量。 逻辑回归:用于二分类问题,预测类别。...实践简单模型,如线性回归、逻辑回归、决策树和KNN。进阶学习复杂模型和算法,包括随机森林、支持向量机和神经网络,理解调参、交叉验证和模型优化的技术。

    42110
    领券