首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何从JSON中创建一个条纹对象?

从JSON中创建一个条纹对象可以通过以下步骤实现:

  1. 首先,将JSON数据解析为一个对象。不同的编程语言提供了不同的方法来解析JSON数据,例如在JavaScript中可以使用JSON.parse()函数,Python中可以使用json.loads()函数。
  2. 确定条纹对象的属性和值。根据JSON数据的结构,确定条纹对象所需的属性和对应的值。
  3. 创建一个新的条纹对象,并将解析得到的属性和值赋给该对象。根据编程语言的不同,可以使用类、结构体或字典等数据结构来表示条纹对象。
  4. 最后,可以根据需要对条纹对象进行进一步的处理或使用。例如,可以将条纹对象存储到数据库中,将其用于生成报告或展示等。

以下是一个示例,展示了如何使用JavaScript从JSON中创建一个条纹对象:

代码语言:txt
复制
// 假设有以下JSON数据
var jsonData = '{"color": "red", "width": 10, "height": 5}';

// 解析JSON数据
var obj = JSON.parse(jsonData);

// 创建条纹对象
function Stripe(color, width, height) {
  this.color = color;
  this.width = width;
  this.height = height;
}

var stripeObj = new Stripe(obj.color, obj.width, obj.height);

// 打印条纹对象
console.log(stripeObj);

在这个示例中,我们首先使用JSON.parse()函数将JSON数据解析为一个对象。然后,我们创建了一个名为Stripe的构造函数,用于创建条纹对象。最后,我们使用解析得到的属性值创建了一个新的条纹对象,并将其打印出来。

请注意,以上示例仅为演示目的,实际的实现方式可能因编程语言和具体需求而有所不同。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

高分辨率、实时的手持物体360°三维模型重建结构光技术

真实物体完整形状的数字化在智能制造、工业检测和反向建模等领域具有重要的应用价值。为了构建刚性对象的完整几何模型,对象必须相对于测量系统(或扫描仪必须相对于对象移动),以获取和集成对象的视图,这不仅使系统配置复杂,而且使整个过程耗时。在这封信中,我们提出了一种高分辨率的实时360°三维(3D)模型重建方法,该方法允许人们手动旋转一个物体,并在扫描过程中看到一个不断更新的三维模型。多视图条纹投影轮廓测量系统从不同的角度获取一个手持物体的高精度深度信息,同时将多个视图实时对齐并合并在一起。我们的系统采用了立体相位展开和自适应深度约束,可以在不增加捕获图案的数量的情况下,稳健地展开密集条纹图像的相位。然后,我们开发了一种有效的从粗到细的配准策略来快速匹配三维表面段。实验结果表明,该方法可以在任意旋转条件下重建复杂物体的高精度完整三维模型,而无需任何仪器辅助和昂贵的预/后处理。

02

智能制造-逆向工程-三维测量-标定

光学三维测量是一项集机械,电气,光学,信息工程技术于一体的前沿技术。该技术应用光学成像原理,对现实世界的物体进行扫描,通过复杂的数据分析、数字图像处理得到目标物体的三维形态数据。该技术几乎不受目标物体的形状限制,经过处理的虚拟数据具有广泛的应用价值。本次设计课题为双目三维光学测量硬件系统设计。本文以格雷码结构光三维测量为编码原理,用SolidWorks建立三维模型,MeshLab处理点云数据图像。硬件方面,除了PC,核心器件为美国德州仪器公司研发的DLP4500系列投影仪,以其先进的DMD(数字微镜器件)技术进行光栅的投射。相位移基本算法:通过采集10张光栅条纹图像相位初值,来获取被测物体的表面三维数据。

02

EfficientDeRain: Learning Pixel-wise Dilation Filtering for High-EfficiencySingle-Image Deraining

由于未知的降雨模式,单图像去噪相当具有挑战性。现有的方法通常对降雨模型做出特定的假设,这些假设很难涵盖现实世界中的许多不同情况,这使得它们不得不采用复杂的优化或渐进式重建。然而,这严重影响了这些方法在许多效率关键应用中的效率和有效性。为了填补这一空白,在本文中,我们将单图像去噪视为一个通用的图像增强问题,并最初提出了一种无模型的去噪方法,即Ef finicientDeRain,它能够在10ms内(即平均约6ms)处理降雨图像,比最先进的方法(即RCDNet)快80多倍,同时实现类似的去噪效果。我们首先提出了一种新颖的逐像素膨胀滤波器。 特别是,用从核预测网络估计的逐像素核对雨天图像进行滤波,通过该网络可以有效地预测每个像素的合适的多尺度核。然后,为了消除合成数据和真实数据之间的差距,我们进一步提出了一种有效的数据增强方法(即RainMix),该方法有助于训练网络进行真实的雨天图像处理。我们对合成和真实世界的降雨数据集进行了全面评估,以证明我们的方法的有效性和效率。

03

计算机视觉最新进展概览(2021年6月27日到2021年7月3日)

1、SIMPL: Generating Synthetic Overhead Imagery to Address Zero-shot and Few-Shot Detection Problems 近年来,深度神经网络(DNNs)在空中(如卫星)图像的目标检测方面取得了巨大的成功。 然而,一个持续的挑战是训练数据的获取,因为获取卫星图像和在其中标注物体的成本很高。 在这项工作中,我们提出了一个简单的方法-称为合成目标植入(SIMPL) -容易和快速地生成大量合成开销训练数据的自定义目标对象。 我们演示了在没有真实图像可用的零射击场景下使用SIMPL合成图像训练dnn的有效性; 以及少量的学习场景,在那里有限的现实世界的图像可用。 我们还通过实验研究了SIMPL对一些关键设计参数的有效性的敏感性,为用户设计定制目标的合成图像提供了见解。 我们发布了SIMPL方法的软件实现,这样其他人就可以在其基础上构建,或者将其用于自己的定制问题。 2、Monocular 3D Object Detection: An Extrinsic Parameter Free Approach 单目三维目标检测是自动驾驶中的一项重要任务。 在地面上存在自我-汽车姿势改变的情况下,这很容易处理。 这是常见的,因为轻微波动的道路平滑和斜坡。 由于在工业应用中缺乏洞察力,现有的基于开放数据集的方法忽略了摄像机姿态信息,不可避免地会导致探测器受摄像机外部参数的影响。 在大多数工业产品的自动驾驶案例中,物体的扰动是非常普遍的。 为此,我们提出了一种新的方法来捕获摄像机姿态,以制定免于外部扰动的探测器。 具体地说,该框架通过检测消失点和视界变化来预测摄像机外部参数。 设计了一种变换器来校正潜势空间的微扰特征。 通过这样做,我们的3D探测器独立于外部参数变化工作,并在现实情况下产生准确的结果,例如,坑洼和不平坦的道路,而几乎所有现有的单目探测器无法处理。 实验表明,在KITTI 3D和nuScenes数据集上,我们的方法与其他先进技术相比具有最佳性能。 3、Focal Self-attention for Local-Global Interactions in Vision Transformers 最近,视觉Transformer及其变体在各种计算机视觉任务中显示出了巨大的前景。 通过自我关注捕捉短期和长期视觉依赖的能力可以说是成功的主要来源。 但它也带来了挑战,由于二次计算开销,特别是高分辨率视觉任务(例如,目标检测)。 在本文中,我们提出了焦点自关注,这是一种结合了细粒度局部交互和粗粒度全局交互的新机制。 使用这种新机制,每个令牌都以细粒度处理最近的令牌,但以粗粒度处理远的令牌,因此可以有效地捕获短期和长期的可视依赖关系。 随着焦点自注意,我们提出了一种新的视觉变压器模型,称为Focal Transformer,在一系列公共图像分类和目标检测基准上实现了优于目前最先进的视觉变压器的性能。 特别是我们的Focal Transformer模型,中等尺寸为51.1M,较大尺寸为89.8M,在2224x224分辨率下的ImageNet分类精度分别达到83.5和83.8 Top-1。 使用Focal transformer作为骨干,我们获得了与目前最先进的Swin transformer相比的一致和实质的改进,这6种不同的目标检测方法采用标准的1倍和3倍计划训练。 我们最大的Focal Transformer在COCO mini-val/test-dev上产生58.7/58.9 box mAPs和50.9/51.3 mask mAPs,在ADE20K上产生55.4 mIoU用于语义分割,在三个最具挑战性的计算机视觉任务上创建新的SOTA。 4、AutoFormer: Searching Transformers for Visual Recognition 最近,基于Transformer的模型在图像分类和检测等视觉任务中显示出了巨大的潜力。 然而,Transformer网络的设计是具有挑战性的。 已经观察到,深度、嵌入尺寸和头部的数量在很大程度上影响视觉变形器的性能。 以前的模型基于手工手工配置这些维度。 在这项工作中,我们提出了一个新的一次性架构搜索框架,即AutoFormer,专门用于视觉转换器搜索。 在超网训练期间,自动前缠绕不同块的重量在同一层。 受益于该战略,训练有素的超级网络允许数千个子网得到非常好的训练。 具体来说,这些继承自超级网络权重的子网的性能与那些从头开始重新训练的子网相当。 此外,搜索模型,我们参考的AutoFormers,超过了最近的先进水平,如ViT和DeiT。 特别是AutoFormer-tiny/small/base在ImageNet上实现了74.7%/81.7%/82.4%的top-1精度,分别为5.7M/22

02

三种超精密光学结构表面形貌测量方法

共聚焦显微扫描技术发展于上世纪80 年代,其测量原理如图所示,激光由光源发出,经分光镜和显微物镜投射在待测品表面上,待测品表面反射回的光束沿着光路结构到达共聚焦针孔滤光片。此时,只有在待测品的表面刚好处于聚焦平面时,反射光才能穿过共聚焦针孔滤光片,被光强倍增管感应到,否则,当待测品表面处于离焦的位置时,反射光会被滤光片吸收。测量物体时,PZT 驱动物镜改变物距,调节待测品表面与焦平面的距离,越靠近焦平面,光电倍增管感应到的光信号越强。当光信号感应到达峰值时,表示待测品表面到达焦平面位置,投射在测量表面上的激光汇聚成一点,根据仪器与该测量点的数学关系可以计算该点的高度信息。对待测品上的各个点依次测量,就可以获求取待测品的整个形貌高度。

01
领券