首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

EM算法学习(三)

: EM算法在多元正态分布缺失的数据下一般都是有较为广泛的应用,所以在这样典型的应用情境下,我将主要研究EM算法在二元正态分布下的应用. 1:二元正态分布的介绍: 设二维的随机变量(X,Y)的概率密度为...即可以得到: ? 同理: ? 哼,证明证明出来了 性质2:正态分布的条件分布仍是正态分布 二元正态分布(X,Y) ~N(u,M),其中: ? 求证: ? 证明过程如下: ?...2:对于二元正态分布均值的MCEM估计: 设总体Z=(X,Y)~N(u,M),其中: ? 现在有如下的观测数据: ?...显然这个数据是缺失的,如果数据完整的话,那么这个参数估计起来很简单,用极大似然估计就OK,但是这样的数据不完整的情况下,用极大似然估计求参数是非常困难的,现在我们知道EM算法对于缺失数据是非常有利的,现在我们用...改写似然函数之后,我们就可以考虑用EM算法来对模型进行参数估计。 在算法的E步中,需要求完全数据的对数似然函数的期望。假设在第t一 1次迭代开始时,X已知,而Y是变量,对Y积分有: ?

616100

EM算法学习(三)

: EM算法在多元正态分布缺失的数据下一般都是有较为广泛的应用,所以在这样典型的应用情境下,我将主要研究EM算法在二元正态分布下的应用. 1:二元正态分布的介绍: 设二维的随机变量(X,Y)的概率密度为...t: 即可以得到: 同理: 哼,证明证明出来了 性质2:正态分布的条件分布仍是正态分布 二元正态分布(X,Y) ~N(u,M),其中: 求证: 证明过程如下: 2:对于二元正态分布均值的MCEM...估计: 设总体Z=(X,Y)~N(u,M),其中: 现在有如下的观测数据: 显然这个数据是缺失的,如果数据完整的话,那么这个参数估计起来很简单,用极大似然估计就OK,但是这样的数据不完整的情况下,用极大似然估计求参数是非常困难的...,现在我们知道EM算法对于缺失数据是非常有利的,现在我们用EM算法来求: 假设协方差矩阵 估计未知参数: 首先以u=[2,4]为例产生二元正态分布随机数,并将产生的随机数扣掉一部分数据,将扣掉的这一部分数据当成未知的缺失数据...,但是计算还是太复杂,更有意思的是如何巧妙地拓展参数空间进行加速收敛.还有在高斯混合模型研究中,本文是因为事先知道GMM分支的数量来 进行估计的,但是如果给的是一堆杂乱的数据,需要解决如何确定分支的问题

1.6K80
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【视频】Copula算法原理和R语言股市收益率相依性可视化分析|附代码数据

    如何使用copula 分析数据回想一下,您可以使用累积分布函数将任何分布转换为均匀分布。同样,您可以使用逆累积分布函数将均匀分布转换为任何分布。...那么,我们只需要以 x为累积分布函数值,对正态分布求逆即可,如果我们将 x 和转化后的x  的分布画在一张图中,就可以直观的看出逆累积分布函数的样子。...同理,我们也可以基于 beta 分布或者gumbel  分布来得到类似的图像,这种概率积分变换的本质是相同的。而我们如果想要从一个任意的分布到均匀分布,那么我们只需要进行一次累积分布函数就可以了。...这里我将 转换后的x 再做一次转化简单的高斯Copula例子我们构建一个简单的例子,来看如何利用概率积分变换来认识高斯copula。...首先从二元正态分布中生成样本:通过给 x1和x2的累积分布函数进行采样,我们可以将其转化成均匀分布。

    87500

    【视频】Copula算法原理和R语言股市收益率相依性可视化分析|附代码数据

    如何使用copula 分析数据 回想一下,您可以使用累积分布函数将任何分布转换为均匀分布。同样,您可以使用逆累积分布函数将均匀分布转换为任何分布。...那么,我们只需要以 x为累积分布函数值,对正态分布求逆即可, 如果我们将 x 和转化后的x  的分布画在一张图中,就可以直观的看出逆累积分布函数的样子。...同理,我们也可以基于 beta 分布或者gumbel  分布来得到类似的图像,这种概率积分变换的本质是相同的。 而我们如果想要从一个任意的分布到均匀分布,那么我们只需要进行一次累积分布函数就可以了。...这里我将 转换后的x 再做一次转化 简单的高斯Copula例子 我们构建一个简单的例子,来看如何利用概率积分变换来认识高斯copula。...首先从二元正态分布中生成样本: 通过给 x1和x2的累积分布函数进行采样,我们可以将其转化成均匀分布。

    80340

    【视频】Copula算法原理和R语言股市收益率相依性可视化分析|附代码数据

    如何使用copula 分析数据 回想一下,您可以使用累积分布函数将任何分布转换为均匀分布。同样,您可以使用逆累积分布函数将均匀分布转换为任何分布。...那么,我们只需要以 x为累积分布函数值,对正态分布求逆即可, 如果我们将 x 和转化后的x  的分布画在一张图中,就可以直观的看出逆累积分布函数的样子。...同理,我们也可以基于 beta 分布或者gumbel  分布来得到类似的图像,这种概率积分变换的本质是相同的。 而我们如果想要从一个任意的分布到均匀分布,那么我们只需要进行一次累积分布函数就可以了。...这里我将 转换后的x 再做一次转化 简单的高斯Copula例子 我们构建一个简单的例子,来看如何利用概率积分变换来认识高斯copula。...首先从二元正态分布中生成样本: 通过给 x1和x2的累积分布函数进行采样,我们可以将其转化成均匀分布。

    78010

    【视频】Copula算法原理和R语言股市收益率相依性可视化分析

    如何使用copula 分析数据 回想一下,您可以使用累积分布函数将任何分布转换为均匀分布。同样,您可以使用逆累积分布函数将均匀分布转换为任何分布。...那么,我们只需要以 x为累积分布函数值,对正态分布求逆即可, 如果我们将 x 和转化后的x 的分布画在一张图中,就可以直观的看出逆累积分布函数的样子。...同理,我们也可以基于 beta 分布或者gumbel 分布来得到类似的图像,这种概率积分变换的本质是相同的。 而我们如果想要从一个任意的分布到均匀分布,那么我们只需要进行一次累积分布函数就可以了。...这里我将 转换后的x 再做一次转化 简单的高斯Copula例子 我们构建一个简单的例子,来看如何利用概率积分变换来认识高斯copula。...首先从二元正态分布中生成样本: 通过给 x1和x2的累积分布函数进行采样,我们可以将其转化成均匀分布。

    75130

    用COPULA模型进行蒙特卡洛(MONTE CARLO)模拟和拟合股票收益数据分析|附代码数据

    当 u 包含通过边缘累积分布函数的参数估计转换为单位超立方体的数据时,这称为边缘_推断函数 (IFM)_ 方法。...hist(x,y) 使用累积分布函数的核估计器将数据转换为 copula 。...从模拟中得出的结论很可能取决于 X1 和 X2 是否具有相关性。 在这种情况下,二元对数正态分布是一个简单的解决方案,当然很容易推广到更高维度和边缘分布是 不同 对数正态的情况。...构建相依双变量分布的更通用方法 尽管创建二元对数正态的上述构造很简单,但它用于说明更普遍适用的方法。首先,我们从二元正态分布生成值对。这两个变量之间存在统计相关性,且均具有正态边缘分布。...事实证明,对于二元正态分布,Kendall's tau 或 Spearman's rho 与线性相关系数 rho 之间存在简单的 1-1 映射:   tau = (2/pi)*arcsin (rho)

    60200

    用COPULA模型进行蒙特卡洛(MONTE CARLO)模拟和拟合股票收益数据分析|附代码数据

    当 u 包含通过边缘累积分布函数的参数估计转换为单位超立方体的数据时,这称为边缘_推断函数 (IFM)_ 方法。...hist(x,y) 使用累积分布函数的核估计器将数据转换为 copula 。...从模拟中得出的结论很可能取决于 X1 和 X2 是否具有相关性。 在这种情况下,二元对数正态分布是一个简单的解决方案,当然很容易推广到更高维度和边缘分布是 不同 对数正态的情况。...构建相依双变量分布的更通用方法 尽管创建二元对数正态的上述构造很简单,但它用于说明更普遍适用的方法。首先,我们从二元正态分布生成值对。这两个变量之间存在统计相关性,且均具有正态边缘分布。...事实证明,对于二元正态分布,Kendall's tau 或 Spearman's rho 与线性相关系数 rho 之间存在简单的 1-1 映射:   tau = (2/pi)*arcsin (rho)

    67900

    用COPULA模型进行蒙特卡洛(MONTE CARLO)模拟和拟合股票收益数据分析|附代码数据

    当 u 包含通过边缘累积分布函数的参数估计转换为单位超立方体的数据时,这称为边缘_推断函数 (IFM)_ 方法。...hist(x,y) 使用累积分布函数的核估计器将数据转换为 copula 。...从模拟中得出的结论很可能取决于 X1 和 X2 是否具有相关性。 在这种情况下,二元对数正态分布是一个简单的解决方案,当然很容易推广到更高维度和边缘分布是 不同 对数正态的情况。...构建相依双变量分布的更通用方法 尽管创建二元对数正态的上述构造很简单,但它用于说明更普遍适用的方法。首先,我们从二元正态分布生成值对。这两个变量之间存在统计相关性,且均具有正态边缘分布。...事实证明,对于二元正态分布,Kendall's tau 或 Spearman's rho 与线性相关系数 rho 之间存在简单的 1-1 映射:   tau = (2/pi)*arcsin (rho)

    75720

    离散型以及连续型随机变量

    二维连续型随机变量 二维连续型随机变量是指两个连续型随机变量的组合。其联合概率密度函数可以通过一个二元函数表示,该函数在任意区域内积分等于1。...PDF的值可以是任意非负实数,但其在整个实数范围内的积分必须等于1。 如何计算连续型随机变量的概率密度函数?...总结来说,计算连续型随机变量的概率密度函数需要明确其形式,并通过积分和数值方法来验证其归一化条件和计算相关的统计量。 二维离散型随机变量的联合分布律是如何表示的?...这个联合分布律可以用下表的形式表示: 1x1​ 1y1​ 2y2​ 3y3​ ⋯⋯ 11p11​ 12p12​ 13p13​ 14p14​ ⋯⋯ 21p21​ 22p22​ 23p23​ 24p24​...例如,可以通过最小二乘法、最大似然估计等方法来估计分布参数,并利用各种统计检验方法(如卡方检验、K-S检验等)来评估模型的拟合优度。

    22520

    用COPULA模型进行蒙特卡洛(MONTE CARLO)模拟和拟合股票收益数据分析|附代码数据

    当 u 包含通过边缘累积分布函数的参数估计转换为单位超立方体的数据时,这称为边缘_推断函数 (IFM)_ 方法。...hist(x,y) 使用累积分布函数的核估计器将数据转换为 copula 。...从模拟中得出的结论很可能取决于 X1 和 X2 是否具有相关性。 在这种情况下,二元对数正态分布是一个简单的解决方案,当然很容易推广到更高维度和边缘分布是 不同 对数正态的情况。...构建相依双变量分布的更通用方法 尽管创建二元对数正态的上述构造很简单,但它用于说明更普遍适用的方法。首先,我们从二元正态分布生成值对。这两个变量之间存在统计相关性,且均具有正态边缘分布。...这等效于使用经验逆 CDF 的平滑版本。 本文摘选 《 MATLAB用COPULA模型进行蒙特卡洛(MONTE CARLO)模拟和拟合股票收益数据分析 》

    1K40

    【深度干货】专知主题链路知识推荐#7-机器学习中似懂非懂的马尔科夫链蒙特卡洛采样(MCMC)入门教程02

    对于离散分布,可能由于结果空间太大而不能进行显式的求和。 蒙特卡洛积分方法一般的想法是使用样本近似估计复杂分布的期望。具体地,我们获得一系列样本x(t),t=1,......在这种情况下,我们可以使用有限样本的累加近似估计期望: ? 在上述过程中,我们用适当样本的求和来代替积分。一般来说,近似计算的精确度可以通过增加n来提高。...举例 举个例子:假设我们希望从柯西分布中随机采样,给出柯西分布的概率密度如下面公式(2.7): ? 如何使用Metropolis sampler来模拟这个分布了,采样得到符合这个分布的样本?...在本例子中,我们使用二元正态分布,其中μ=(0,0)和 ? 。该分布的密度在图2.5(右图)中加以展示。我们的目标是从该分布中采样出多元变量 ?...直到 t=T 举例 示例1:在上一章的“示例3”中,我们利用Metropolis sampler从二元正态分布中采样。二元正态分布也可以用Gibbs sampling进行高效的采样。

    4K61

    用COPULA模型进行蒙特卡洛(MONTE CARLO)模拟和拟合股票收益数据分析|附代码数据

    当 u 包含通过边缘累积分布函数的参数估计转换为单位超立方体的数据时,这称为边缘_推断函数 (IFM)_ 方法。...hist(x,y) 使用累积分布函数的核估计器将数据转换为 copula 。...从模拟中得出的结论很可能取决于 X1 和 X2 是否具有相关性。 在这种情况下,二元对数正态分布是一个简单的解决方案,当然很容易推广到更高维度和边缘分布是 不同 对数正态的情况。...构建相依双变量分布的更通用方法 尽管创建二元对数正态的上述构造很简单,但它用于说明更普遍适用的方法。首先,我们从二元正态分布生成值对。这两个变量之间存在统计相关性,且均具有正态边缘分布。...事实证明,对于二元正态分布,Kendall's tau 或 Spearman's rho 与线性相关系数 rho 之间存在简单的 1-1 映射:   tau = (2/pi)*arcsin (rho)

    50530

    用COPULA模型进行蒙特卡洛(MONTE CARLO)模拟和拟合股票收益数据分析

    当 u 包含通过边缘累积分布函数的参数估计转换为单位超立方体的数据时,这称为边缘_推断函数 (IFM)_ 方法。...hist(x,y) 使用累积分布函数的核估计器将数据转换为 copula 。...从模拟中得出的结论很可能取决于 X1 和 X2 是否具有相关性。 在这种情况下,二元对数正态分布是一个简单的解决方案,当然很容易推广到更高维度和边缘分布是 不同 对数正态的情况。...构建相依双变量分布的更通用方法 尽管创建二元对数正态的上述构造很简单,但它用于说明更普遍适用的方法。首先,我们从二元正态分布生成值对。这两个变量之间存在统计相关性,且均具有正态边缘分布。...事实证明,对于二元正态分布,Kendall's tau 或 Spearman's rho 与线性相关系数 rho 之间存在简单的 1-1 映射: tau = (2/pi)\*arcsin (rho)

    2.7K12

    Python实现12种概率分布(附代码)

    今天给大家带来的这篇文章是:《如何使用Python实现机器学习中常用的12种概率分布》 机器学习有其独特的数学基础,我们用微积分来处理变化无限小的函数,并计算它们的变化; 我们使用线性代数来处理计算过程...它由单个参数φ∈ [0, 1] 控制,φ 给出了随机变量等于 1 的概率。我们使用二元交叉熵函数实现二元分类,它的形式与对伯努利分布取负对数是一致的。 3....在贝叶斯推断中,狄利克雷分布作为多项式分布的共轭先验得到应用,在机器学习中被用于构建狄利克雷混合模型。...高斯分布(连续型) 高斯分布或正态分布是最为重要的分布之一,它广泛应用于整个机器学习的模型中。例如,我们的权重用高斯分布初始化、我们的隐藏向量用高斯分布进行归一化等等。...学生 t-分布 学生 t-分布(Student t-distribution)用于根据小样本来估计呈正态分布且变异数未知的总体,其平均值是多少。

    1K10

    蒙特卡洛法求积分

    问题一:我们如何用蒙特卡洛方法求积分?问题二:如何近似求一个随机变量的数学期望?问题三:估计的误差是多少?问题四:如何从理论上对蒙特卡洛估计做分析?...接下来我们就可以用统计学的手段来处理了。 问题二:如何近似求一个随机变量的数学期望? 通常情况下, 都是一个比较复杂的函数。我们想要近似求期望,只能用统计学的手段。...问题三:估计的误差是多少? 凡估计必有误差 每一次采样都可以得到一个估计值,我们多次采样,得到多个估计值,画出多个估计值的分布图,从图上就可以近似看出估计的误差了。...惊讶的观察到: 虽然我们真实值是2.67左右,但是估计出2.5、2.9这种偏离程度大的值还是有可能的。 多次采样的结果分布像是正态分布。(这是巧合吗?)...理解好蒙特卡洛求积的思想有助于进一步学习MCMC方法。 进一步还可以思考: 如何用蒙特卡洛估计重积分?这种方法会随着维数的增大而出现计算困难吗?

    99910

    【概率论基础】机器学习领域必知必会的12种概率分布(附Python代码实现)

    机器学习有其独特的数学基础,我们用微积分来处理变化无限小的函数,并计算它们的变化;我们使用线性代数来处理计算过程;我们还用概率论与统计学建模不确定性。...它由单个参数φ∈ [0, 1] 控制,φ 给出了随机变量等于 1 的概率。我们使用二元交叉熵函数实现二元分类,它的形式与对伯努利分布取负对数是一致的。 ? 3....在贝叶斯推断中,狄利克雷分布作为多项式分布的共轭先验得到应用,在机器学习中被用于构建狄利克雷混合模型。 ?...高斯分布(连续型) 高斯分布或正态分布是最为重要的分布之一,它广泛应用于整个机器学习的模型中。例如,我们的权重用高斯分布初始化、我们的隐藏向量用高斯分布进行归一化等等。 ?...学生 t-分布 学生 t-分布(Student t-distribution)用于根据小样本来估计呈正态分布且变异数未知的总体,其平均值是多少。

    1.3K10

    【机器学习】因微知著,穷数通灵:微积分与机器学习的量化之美

    1.2 多重积分的历史与发展 多重积分的发展与单变量积分密切相关。随着数学的进步,特别是在微积分和线性代数的基础上,多重积分得到了系统化的发展。...1.2.2 多重积分的发展 20世纪,随着计算机技术的快速发展,多重积分的数值计算方法得到了极大的提升。数值积分方法如蒙特卡罗积分、梯形法、辛普森法等,使得复杂多维积分的计算变得更加高效和准确。...三、实战项目:使用Python进行多重积分与微分方程的计算 本节将通过两个实战项目,分别展示如何使用Python进行多重积分的计算与微分方程的求解。...N(0,1) 的期望值: 0.00, 误差估计: 0.00e+00 正态分布 N(0,1) 的方差: 1.00, 误差估计: 5.27e-09 4.3.4 结果解读 期望值与方差 通过Python的数值积分方法...实战项目展示了如何使用Python进行多重积分和微分方程的计算与可视化,增强了理论与实践的结合。

    11410

    机器学习领域必知必会的12种概率分布(附Python代码实现)

    机器学习有其独特的数学基础,我们用微积分来处理变化无限小的函数,并计算它们的变化;我们使用线性代数来处理计算过程;我们还用概率论与统计学建模不确定性。...它由单个参数φ∈ [0, 1] 控制,φ 给出了随机变量等于 1 的概率。我们使用二元交叉熵函数实现二元分类,它的形式与对伯努利分布取负对数是一致的。 ? 3....在贝叶斯推断中,狄利克雷分布作为多项式分布的共轭先验得到应用,在机器学习中被用于构建狄利克雷混合模型。 ?...高斯分布(连续型) 高斯分布或正态分布是最为重要的分布之一,它广泛应用于整个机器学习的模型中。例如,我们的权重用高斯分布初始化、我们的隐藏向量用高斯分布进行归一化等等。 ?...学生 t-分布 学生 t-分布(Student t-distribution)用于根据小样本来估计呈正态分布且变异数未知的总体,其平均值是多少。

    46100

    Distribution is all you need:这里有12种做ML不可不知的分布

    机器学习有其独特的数学基础,我们用微积分来处理变化无限小的函数,并计算它们的变化;我们使用线性代数来处理计算过程;我们还用概率论与统计学建模不确定性。...它由单个参数φ∈ [0, 1] 控制,φ 给出了随机变量等于 1 的概率。我们使用二元交叉熵函数实现二元分类,它的形式与对伯努利分布取负对数是一致的。 ? 3....在贝叶斯推断中,狄利克雷分布作为多项式分布的共轭先验得到应用,在机器学习中被用于构建狄利克雷混合模型。 ?...高斯分布(连续型) 高斯分布或正态分布是最为重要的分布之一,它广泛应用于整个机器学习的模型中。例如,我们的权重用高斯分布初始化、我们的隐藏向量用高斯分布进行归一化等等。 ?...学生 t-分布 学生 t-分布(Student t-distribution)用于根据小样本来估计呈正态分布且变异数未知的总体,其平均值是多少。

    53630
    领券