首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何使用Python创建美观而有见地的图表

作者 | Fabian Bosler 来源 | Medium 在今天的文章中,将研究使用Python绘制数据的三种不同方式。将通过利用《 2019年世界幸福报告》中的数据来做到这一点。...例如研究nitty-gritty命令以更改x-ticks的倾斜度或类似的愚蠢行为。甚至不要开始使用多张图表。结果看起来令人印象深刻,并且以编程方式创建这些图表是一种奇妙的感觉。...只需要CSV文件,即可使用Python轻松创建。试试看! 目前的工作流程 最终决定使用Pandas原生绘图进行快速检查,并使用Seaborn生成要在报表和演示文稿中使用的图表(在视觉上很重要)。...前进到seaborn。 漂亮:与Seaborn的高级绘图 Seaborn利用绘图默认值。为了确保结果匹配,请运行以下命令。...FacetGrid Seaborn的FacetGrid是使用Seaborn的最令人信服的论据之一,因为它使创建多图变得轻而易举。通过对图,已经看到了FacetGrid的示例。

3K20

万字长文 | 超全代码详解Python制作精美炫酷图表教程

以编程的方式创建这些图表是非常奇妙的,例如,一次生成50个不同变量的图表,结果令人印象深刻。然而,其中涉及大量的工作,需要记住一大堆无用的指令。 Seaborn 学习Seaborn能够节省很多精力。...当前工作流程 最后,我决定使用Pandas本地绘图进行快速检查,并使用Seaborn绘制要在报告和演示中使用的图表(视觉效果很重要)。 2. 分布的重要性 ?...美观:使用Seaborn进行高级绘图 Seaborn使用的是默认绘图。要确保运行结果与本文一致,请运行以下命令。...小提琴图在绘制大洲与生活阶梯的关系图时,用人均GDP的平均值对数据进行分组。人均GDP越高,幸福指数就越高 配对图 Seaborn配对图是在一个大网格中绘制双变量散点图的所有组合。...结束语 本文展示了如何成为一名真正的Python可视化专家、如何在快速探索时更有效率、以及如何在董事会会议前创建更漂亮的图表、还有如何创建交互式绘图图表,尤其是在绘制地理空间数据时,十分有用。

3.2K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    商业数据分析比赛实战,内附项目代码

    下图展示了本课程中使用Pandas、 Seaborn等常用工具库绘制的部分图表: 现在教程开始啦~ 创新活力数据分析项目实战开发步骤 数据集简介 数据预处理:清洗、过滤 数据分析:公司 数据分析:人员...# 如果我们使用 bar 绘制这个图表, 中文字符会比较难以查看 按时间查看企业总数增长趋势 # 按时间查看企业总数增长趋势 df_gs. groupby(df_gs. index. year) ....AxesSubplot at 0x7fbfe0de3e48> 按产业图谱分组绘制 注册资本对数值 # 按产业图谱分组绘制 注册资本对数值 # 首先将注册资本取对数后的结果放在数据集当中。...注册资本. apply(lambda x : np. log10(x) ) # 使⽤seaborn 的 FacetGrid 按照产业图谱分组绘制注册资本对数值直⽅图 g = sns....FacetGrid(df_gs, col=' 产业图谱' ) g. map(sns. distplot, ' 注册资本log' ) # seaborn 的直方图默认也绘制了密度图 Out[27] : <

    1.6K40

    70个精美图快速上手seaborn!

    Seaborn旨在帮助用户轻松地生成有吸引力和信息丰富的可视化结果。...数据集可视化:Seaborn还包含一些内置的示例数据集,这些数据集可以直接在库中使用。你可以使用这些数据集来快速生成演示图表,同时也可以将它们作为学习和实践的基础。...统计功能增强:Seaborn提供了许多额外的统计功能,使得数据探索更加方便。例如,你可以使用Seaborn轻松地绘制分布图、拟合回归线、绘制核密度图等。...多变量数据可视化:Seaborn提供了一些强大的工具来可视化多变量数据。你可以使用Seaborn绘制矩阵图、热力图、聚类图等,以揭示不同变量之间的关系和模式。...如何理解seaborn.FacetGrid函数?

    2.6K150

    用Seaborn实现高级数据分析与可视化

    在本文中,我们将探讨如何使用Seaborn进行数据分析与可视化,通过实际案例展示如何通过视觉化揭示数据背后的故事。安装与准备工作在开始之前,请确保你的Python环境中已经安装了必要的库。...这部分将介绍如何自定义Seaborn的绘图风格,以及一些高级的可视化技巧,帮助你打造专业级的数据可视化图表。1....通过改变主题和调色板,能够有效增强图表的视觉吸引力和信息传递效果。2. 使用FacetGrid进行条件绘图FacetGrid是Seaborn的强大工具之一,允许我们在多个条件下绘制一组图表。...Seaborn绘制了一条回归线,接着使用Matplotlib添加了一条表示小费平均值的红色虚线。...Pandas对数据进行了分组并计算了平均值,然后使用Seaborn绘制了聚合数据的条形图。

    22320

    数据挖掘从入门到放弃(五)seaborn 的数据可视化

    seaborn是一个面向对象可视化库,本次使用seaborn自带的tips(餐厅小费)数据集进行数据的分布探索,在遇到新的数据集合时候,分析问题不至于无从下手; Seaborn通过sns.set()方法实现主题风格更改...,使用distplot()方法,横坐标是数据,纵坐标是概率图;参照seaborn官网api: # seaborn.distplot(a, bins=None, hist=True, kde=True,...4、根据属性值域绘制散点图:relplot() # 4、根据属性值域绘制散点图:relplot() # relplot()根据不同特征属性值域绘制变量之间的散点图 # seaborn.relplot(...,在x和y轴绘制分布图,在中心绘制散点图; # seaborn.jointplot(x, y, data=None, kind='scatter', stat_func=None, color=None...10、绘制条件关系的多图网格:FacetGrid() # 10、绘制条件关系的多图网格:FacetGrid() g = sns.FacetGrid(tips, col="time", row="smoker

    2.1K50

    Seaborn 基本语法及特点

    Seaborn 在 Matplotlib 的基础上进行了更加高级的封装,用户能够使用极少的代码绘制出拥有丰富统计信息的科研论文配图。...Seaborn 中的数据分布型图绘制函数: 分类数据型图 在面对数据组中具有离散型变量(分类变量)的情况时,我们可使用以 X 轴或 Y 轴作为分类轴的绘图函数来绘制分类数据型图。...Seaborn 中常见的分类数据型图绘制函数: 回归模型分析型图 我们可以使用回归模型分析型图表示数据集中变量间的关系,使用统计模型来估计两组变量间的关系。...FacetGrid () 函数 Seaborn 提供的 FacetGrid () 函数可实现数据集中任一变量的分布和数据集子集中多个变量之间关系的可视化展示。...在 PairGrid () 函数中,每个行和列都会被分配一个不同的变量,这就导致绘制结果为显示数据集中成对变量间关系的图。这种图也被称为“散点图矩阵”。

    27230

    seaborn从入门到精通03-绘图功能实现05-构建结构化的网格绘图

    seaborn从入门到精通03-绘图功能实现05-构建结构化的网格绘图 总结 本文主要是seaborn从入门到精通系列第3篇,本文介绍了seaborn的绘图功能实现,本文是FacetGrid和PairGrid...图形级函数构建在本章教程中讨论的对象之上。在大多数情况下,您将希望使用这些函数。它们负责一些重要的簿记,使每个网格中的多个图同步。本章解释了底层对象是如何工作的,这可能对高级应用程序很有用。...当您希望在数据集的子集中分别可视化变量的分布或多个变量之间的关系时,FacetGrid类非常有用。FacetGrid最多可以用三个维度绘制:row, col, and hue。...前两个与得到的轴数组有明显的对应关系;可以将色调变量看作是沿着深度轴的第三维度,其中不同的层次用不同的颜色绘制。...使用PairGrid可以非常快速、非常高级地总结数据集中有趣的关系。

    21920

    分布(六)利用python绘制山脊图

    分布(六)利用python绘制山脊图 山脊图 (Ridgeline chart)简介 山脊图可以同时显示几个组的数值分布情况,并且可以在同一水平下,直观地对比多个分布的变化。...通过searbon绘制山脊图 # 1950~2010年西雅图的平均气温,并展示其分布 import numpy as np import pandas as pd import seaborn as...绘制山脊图 # 调色板 pal = sns.color_palette(palette='coolwarm', n_colors=12) # 初始12个月份的画布 g = sns.FacetGrid...showticklabels=False) # that way you hide the y axis ticks labels ) fig.show() 总结 以上介绍了两种绘制山脊图的方式...,一种结合searbon的FacetGrid和kdeplot绘制,另一种则是利用的plotly的go.Scatter,并修改参数fill='tonexty'以绘制区域图的效果。

    39210

    seaborn从入门到精通02-绘图功能概述

    the kind parameter: 要绘制内核密度图,使用与kdeploy()相同的代码,使用kind参数选择它: penguins = sns.load_dataset("penguins...按照设计,它们“拥有”自己的图形,包括其初始化,因此不存在使用图形级函数在现有轴上绘制图形的概念。这个约束允许图形级函数实现一些特性,比如将图例放在图之外。...在使用图形级函数时,有几个关键的区别。首先,函数本身具有控制图形大小的参数(尽管这些实际上是管理图形的底层FacetGrid的参数)。...为了演示这一点,让我们直接使用FacetGrid来设置一个空图。...结果是,你可以分配面形变量,而不需要停下来考虑如何调整总图形大小。缺点是,当您确实想要更改图形大小时,您需要记住,事情的工作方式与在matplotlib中的工作方式略有不同。

    30230

    数据可视化基础与应用-04-seaborn库从入门到精通01-02

    它的面向数据集的声明性API让您可以专注于图表的不同元素的含义,而不是如何绘制它们的细节。...在幕后,seaborn使用matplotlib绘制它的情节。...请注意,我们如何仅提供变量的名称及其在图中的角色。与直接使用matplotlib不同,不需要根据颜色值或标记代码指定绘图元素的属性。...在使用图形级函数时,有几个关键的区别。首先,函数本身具有控制图形大小的参数(尽管这些实际上是管理图形的底层FacetGrid的参数)。...结果是,你可以分配面形变量,而不需要停下来考虑如何调整总图形大小。缺点是,当您确实想要更改图形大小时,您需要记住,事情的工作方式与在matplotlib中的工作方式略有不同。

    22410

    Python Seaborn (5) 分类数据的绘制

    作者:未禾 数据猿官网 | www.datayuan.cn 我们之前探讨了如何使用散点图和回归模型拟合来可视化两个变量之间的关系,以及如何在其他分类变量的层次之间进行展示。...非常实用的方法是将 Seaborn 的分类图分为三类,将分类变量每个级别的每个观察结果显示出来,显示每个观察分布的抽象表示,以及应用统计估计显示的权重趋势和置信区间: · 第一个包括函数 swarmplot...最后,在绘制提琴图的时候有几个选项,包括显示每个人的观察结果而不是总结框图值的方法: ?...这类似于分类而不是定量变量的直方图。在 Seaborn 中,使用 countplot() 函数很容易绘制: 备注:函数将默认使用 count 参数作为 x/y 中未传的一组维度 ?...绘制多层面板分类图 正如我们上面提到的,有两种方法可以在 Seaborn 中绘制分类图。

    4K20

    seaborn的介绍

    以下是seaborn提供的一些功能: 面向数据集的API,用于检查多个变量之间的关系 专门支持使用分类变量来显示观察结果或汇总统计数据 可视化单变量或双变量分布以及在数据子集之间进行比较的选项 不同种类因变量的线性回归模型的自动估计和绘图...让我们逐个介绍它们: 我们导入seaborn,这是这个简单例子所必需的唯一库。 在幕后,seaborn使用matplotlib绘制情节。...为了做这些事情,他们使用了seaborn FacetGrid。 每个不同的图形级别图kind将特定的“轴级”功能与FacetGrid对象组合在一起。...结果是图形级功能需要控制它所处的图形,而轴级功能可以组合成一个更复杂的matplotlib图形,其他轴可能有也可能没有seaborn图: ?...图形级函数的一些自定义可以通过传递给它的附加参数来完成FacetGrid,您可以使用该对象上的方法来控制图形的许多其他属性。

    4K20

    数据可视化基础与应用-04-seaborn库从入门到精通03

    它们可以这样做,因为它们绘制二维图形,可以通过使用色相、大小和样式的语义映射到三个额外的变量。...在关系图教程中,我们看到了如何使用不同的可视化表示来显示数据集中多个变量之间的关系。在示例中,我们关注的主要关系是两个数值变量之间的情况。...This is built into displot(): 显示边际分布的一种不那么突兀的方法是使用“地毯”图,它在图的边缘添加一个小标记来表示每个单独的观察结果。...这将使用回归线周围的半透明带绘制。使用自举法估计置信区间;对于大型数据集,建议通过将该参数设置为None来避免计算。...当您希望在数据集的子集中分别可视化变量的分布或多个变量之间的关系时,FacetGrid类非常有用。FacetGrid最多可以用三个维度绘制:row, col, and hue。

    58910
    领券