首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas库的基础使用系列---获取行和列

前言我们上篇文章简单的介绍了如何获取行和列的数据,今天我们一起来看看两个如何结合起来用。获取指定行和指定列的数据我们依然使用之前的数据。...我们先看看如何通过切片的方法获取指定列的所有行的数据info = df.loc[:, ["2021年", "2017年"]]我们注意到,行的位置我们使用类似python中的切片语法。...我们试试看如何将最后一列也包含进来。info = df.iloc[:, [1, 4, -1]]可以看到也获取到了,但是值得注意的是,如果我们使用了-1,那么就不能用loc而是要用iloc。...如果要使用索引的方式,要使用下面这段代码df.iloc[2, 2]是不是很简单,接下来我们再看看如何获取多行多列。为了更好的的演示,咱们这次指定索引列df = pd.read_excel(".....通常是建议这样获取的,因为从代码的可读性上更容易知道我们获取的是哪一行哪一列。当然我们也可以通过索引和切片的方式获取,只是可读性上没有这么好。

63700
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用Python和Pandas处理网页表格数据

    使用Python和Pandas处理网页表格数据今天我要和大家分享一个十分实用的技能——使用Python和Pandas处理网页表格数据。...如果我们能够灵活地使用Python和Pandas这两个强大的工具,就能够快速、高效地对这些数据进行处理和分析。首先,我们需要了解什么是Python和Pandas。...而Pandas库是Python中用于数据处理和分析的重要工具,它提供了大量的功能和方法,能够方便地读取、处理和分析各种结构化数据。使用Python和Pandas处理网页表格数据的第一步是获取数据。...通过学习如何使用Python和Pandas处理网页表格数据,我们可以快速、高效地对这些数据进行清洗、处理和分析。...最后,我们可以将处理好的数据保存为不同格式的文件,方便后续使用和分享。希望通过本文的分享,大家对如何使用Python和Pandas处理网页表格数据有了更深入的了解。

    27930

    Python 使用pandas 进行查询和统计详解

    前言 在使用 Pandas 进行数据分析时,我们需要经常进行查询和统计分析。...但是Pandas 是如何进行查询和统计分析得嘞, let’s go : 数据筛选查询 通过列名索引筛选数据: import pandas as pd data = {'name': ['Tom', '...0:2] 通过布尔索引筛选数据: # 选取年龄大于等于 20 的记录 df[df['age'] >= 20] # 选取性别为女的记录 df[df['gender'] == 'F'] 数据统计分析 Pandas...按照某列数据进行降序排列: df.sort_values(by='age', ascending=False) 数据聚合 对整个 DataFrame 进行聚合操作: # 聚合函数:求和、均值、中位数、最大值、最小值...df.isnull() 删除缺失值所在的行或列: # 删除所有含有缺失值的行 df.dropna() # 删除所有含有缺失值的列 df.dropna(axis=1) 用指定值填充缺失值: # 将缺失值使用

    32910

    用python的pandas打开csv文件_如何使用Pandas DataFrame打开CSV文件 – python

    当我尝试使用pandas.read_csv打开文件时,出现此错误消息 message : UnicodeDecodeError: ‘utf-8’ codec can’t decode byte 0xa1...那么,如何打开该文件并获取数据框? 参考方案 试试这个: 在文本编辑器中打开cvs文件,并确保将其保存为utf-8格式。...然后照常读取文件: import pandas csvfile = pandas.read_csv(‘file.csv’, encoding=’utf-8′) 如何使用Pandas groupby在组上添加顺序计数器列...这个程序包有python端口吗?如果不存在,是否可以通过python使用该包? python参考方案 最近,我遇到了pingouin库。如何用’-‘解析字符串到节点js本地脚本?...sqlite3数据库已锁定 – python 我在Windows上使用Python 3和sqlite3。

    11.7K30

    如何在Python 3中安装pandas包和使用数据结构

    pandas软件包提供了电子表格功能,但使用Python处理数据要比使用电子表格快得多,并且证明pandas非常有效。...在本教程中,我们将首先安装pandas,然后让您了解基础数据结构:Series和DataFrames。 安装 pandas 同其它Python包,我们可以使用pip安装pandas。...让我们在命令行中启动Python解释器,如下所示: python 在解释器中,将numpy和pandas包导入您的命名空间: import numpy as np import pandas as pd...没有声明索引 我们将输入整数数据,然后为Series提供name参数,但我们将避免使用index参数来查看pandas如何隐式填充它: s = pd.Series([0, 1, 4, 9, 16, 25...您现在应该已经安装pandas,并且可以使用pandas中的Series和DataFrames数据结构。 想要了解更多关于安装pandas包和使用数据结构的相关教程,请前往腾讯云+社区学习更多知识。

    19.5K00

    如何用 Python 和 Pandas 分析犯罪记录开放数据?

    报告人是 Richard ,他给参会的部分人员讲解了开放数据的定义、用途和使用方法。 ? 虽然从2013年开始,我就在课程中为学生们讲解开放数据。但是从他的报告中,我依然收获了很多东西。...本文,我借鉴 Richard 的分析思路,换成用 Python 和数据分析包 Pandas 对该数据集进行分析和可视化。希望通过这个例子,让你了解开放数据的获取、整理、分析和可视化。...这里,请你安装一个特别好用的时间分析软件包 python-dateutil 。我第一次使用的时候,立即决定弃用 datetime 包了。 !...小结 通过本文的学习,希望你已掌握了以下内容: 如何检索、浏览和获取开放数据; 如何用 Python 和 Pandas 做数据分类统计; 如何在 Pandas 中做数据变换,以及缺失值补充; 如何用 Pandas...祝 Python 编程愉快(和出入平安)!

    1.9K20

    WinCC 中如何获取在线 表格控件中数据的最大值 最小值和时间戳

    1 1.1 最小值和时间戳,并在外部对 象中显示。如图 1 所示。...左侧在线表格控件中显示项目中归档变量的值,右侧静态 文本中显示的是表格控件中温度的最大值、最小值和相应的时间戳。 1.2 使用的软件版本为:WinCC V7.5 SP1。...创建两个文本变量 8 位字符集类型的变量 “startTime”和“endTime”,用于设定在 线表格控件的开始时间和结束时间。如图 2 所示。...用于获取统计数据并在 RulerControl件中显示。 其中“读取数据”按钮下的脚本如图 9 所示。用于读取 RulerControl 控件中的数据到外部静态文本中显示。...点击 “执行统计” 获取统计的结果。如图 11 所示。 3.最后点击 “读取数据” 按钮,获取最大值、最小值和时间戳。如图 12 所示。

    9.7K11

    如何用python实现网站数据获取和处理

    一、网络库的选择python的关于http网络请求的module有好些个,我们使用这些库来达到网络爬取或者完成RESTful API交换。这些库比较推荐的有urllib3,requests。...fsspec库抽象文件系统,云节点,URLs和远程服务点。这些感兴趣都可以试用下。在本文中,使用request库通过代码来讲解网站爬取的一些注意事项。...然后使用reqeusts来写一个简单的python网络请求。2.1 服务端这里描述了一个监听8090端口的tcp服务。...这里分别说明这些问题requests库或python是如何应对的。3.1 网站登陆授权很多网站都需要鉴权,鉴权类型有很多种,下面举例几种从简单到复杂的鉴权方案。...以json举例,我们可以使用python的json库,进一步加工网站消息。

    24510

    如何获取Go最新动态和使用最新特性

    热爱Go语言,一直使用着、关注着。那么如何获取Go最新动态,使用它最新的特性能? 1、获取最新动态 获取Go语言的最新动态有以下几种方法。...clone Go tip 代码,Windows 下建议使用 TortoiseHg,管理、查看都很方便。 2.1、编译 tip 版本 使用 tip 版本,只能自己编译。...但是安装 Python 后,问题依旧 2.2、寻找答案的途径 一般的,我们遇到问题会上谷歌、百度之类的搜索引擎查。对于 Go 语言,目前还比较小众,有些问题可能搜索引擎找不到答案。...2.3、使用新特性 安装了 tip 版,就可以使用 Go 的最新特性了,尽情享受 Go 带给你的快了吧! 注:以上不少网址可能都被墙了,程序员应该学会访问外国网站!...发现了一个 go 源码的 github 只读镜像,代码几乎和官方同步,不用访问外国网站可以看Go最新变化了。https://github.com/jnwhiteh/golang

    2.1K100

    使用CSV模块和Pandas在Python中读取和写入CSV文件

    CSV可以通过Python轻松读取和处理。...Python CSV模块 Python提供了一个CSV模块来处理CSV文件。要读取/写入数据,您需要遍历CSV行。您需要使用split方法从指定的列获取数据。...使用Pandas读取CSV文件 Pandas是一个开源库,可让您使用Python执行数据操作。熊猫提供了一种创建,操作和删除数据的简便方法。...结论 因此,现在您知道如何使用方法“ csv”以及以CSV格式读取和写入数据。CSV文件易于读取和管理,并且尺寸较小,因此相对较快地进行处理和传输,因此在软件应用程序中得到了广泛使用。...Pandas是读取CSV文件的绝佳选择。 另外,还有其他方法可以使用ANTLR,PLY和PlyPlus之类的库来解析文本文件。

    20.1K20

    python爬虫中如何获取cookie和添加代理池

    当我们访问某些需要登录才能访问到指定用户名密码的时候,就需要我们携带cookie才能访问了,这个时候我们可以先用浏览器登录上,并访问下指定页面,检查下他携带的cookie信息是什么,然后将其cookie复制出来,放到我们的代码中,比如我们可以通过python...来获取访问的cookie信息,如下代码示例:import sqlite3# 连接到cookie数据库conn = sqlite3.connect('C:\\Users\\[用户名]\\AppData\\...conn.execute('SELECT host_key, name, value FROM cookies')# 输出查询结果for row in cursor: print(row)上面我们了解了如何获取...cookie并使用,接下来就是代理的使用问题,在爬取过程中只有将这两个结合起来才能更有效的爬取数据。..., "port" : proxyPort, "user" : proxyUser, "pass" : proxyPass, } # 设置 http和https

    77920

    python 数据分析基础 day15-pandas数据框的使用获取方式1:使用DataFrame.loc

    今天是读《pyhton数据分析基础》的第15天,今天读书笔记的内容为使用pandas模块的数据框类型。 数据框(DataFrame)类型其实就是带标题的列表。...很多时候,整个数据框的数据并不会一次性的用于某一部的分析,而是选用某一列或几列的数据进行分析,此时就需要获取数据框的部分数据。...获取方式如下: 获取方式1:使用DataFrame.loc[] #调用某两行两列交汇的数据 #[index1,index2]表示引用索引号为index1和index2的两行数据 #[colName1,colName2...]表示引用列标题为colName1和colName2的列数据 DataFrame.loc[[index1,index2],[colName1,colName2]] 获取方式2:使用DataFrame.iloc...选取第四列和第五列 DataFrame.iloc[1:3,3:5] DataFrame.iloc[[1,2],[3,4]]

    1.7K110

    Python数据分析库pandas高级接口dt和str的使用

    Series对象和DataFrame的列数据提供了cat、dt、str三种属性接口(accessors),分别对应分类数据、日期时间数据和字符串数据,通过这几个接口可以快速实现特定的功能,非常快捷。...本文重点介绍和演示dt和str的用法。...DataFrame数据中的日期时间列支持dt接口,该接口提供了dayofweek、dayofyear、is_leap_year、quarter、weekday_name等属性和方法,例如quarter可以直接得到每个日期分别是第几个季度...DataFrame数据中的字符串列支持str接口,该接口提供了center、contains、count、endswith、find、extract、lower、split等大量属性和方法,大部分用法与字符串的同名方法相同...本文使用的数据文件为C:\Python36\超市营业额2.xlsx,部分数据与格式如下: ? 下面代码演示了dt和str接口的部分用法: ?

    2.9K20

    python中any和all如何使用

    python中any()和all()如何使用 和 对于检查两个对象相等时非常实用,但是要注意, 和 是python内置函数,同时numpy也有自己实现的 和 ,功能与python内置的一样,只不过把...因为python内置的对高于1维的 没法理解,所以numpy基于的计算最好用numpy自己实现的 和 。 本质上讲, 实现了或(OR)运算,而 实现了与(AND)运算。...伪代码(其实是可以运行的python代码,但内置的all是由C写的)实现方式: python的模块由两类语言开发,一类为纯python,一类为编译型语言,比如C/C++/Fortran。...绝大多数标准库由纯python开发,这是由于python语言具有简洁性及短的开发周期。...对于有些模块,通常是关乎运行性能的,一般都由编译型语言开发,比如 模块和for循环N多层的线性代数等模块。所以无法通过 方法获得源码,通常会抛出一个 异常。

    1.2K50

    100个Python实战项目(十一)如何使用 Python 获取电话号码信息?

    为了获取任何手机号码的详细信息。我们可以使用 Python 的内置库,即“电话号码”。这个库中存在的模块是“geocoder”、“carrier”和“timezone”。...: ") # Parsing ph_no = phonenumbers.parse(a) 第 4 步:地理编码器:此模块用于获取您号码的位置。...,并分别通过Excel和Python实施和对比。...通过本书一方面可以拓宽对Excel功能的认识,另一方面可以学习和掌握Python的基础操作。...本书分为 11 章,涵盖的主要内容有Excel和Python在数据分析领域的定位与核心功能对比、统计量介绍、Excel与Python实践环境搭建、数据处理与分析的基本方法、ETL方法、数据建模理论、数据挖掘基础

    86340

    如何使用 Python 和 SQLAlchemy 结合外键映射来获取其他表中的数据

    在使用 Python 和 SQLAlchemy 时,结合外键映射可以让你在查询时轻松地获取其他表中的数据。...SQLAlchemy 提供了丰富的 ORM(对象关系映射)功能,可以让你通过定义外键关系来查询并获取关联的数据。下面我会演示如何设置外键关系,并通过 SQLAlchemy 查询获取其他表中的数据。...1、问题背景在使用 SQLAlchemy 进行对象关系映射时,我们可能需要获取其他表中的数据。...现在,我们希望从 Order 表中查询订单信息时,同时获取该订单所属客户的姓名和电子邮件地址。...2.2 单向关系映射如果我们只需要从 Order 表中获取客户信息,而不需要从 Customer 表中获取订单信息,那么我们可以使用单向关系映射。

    14310
    领券