首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用R语言随机波动模型SV处理时间序列中的随机波动率

在y包含零的情况下,发出警告,并在进行辅助混合物采样之前,将大小为sd(y)/ 10000的小偏移常数添加到平方收益上。 但是,我们通常建议完全避免零回报,例如通过预先降低零回报。...下面是如何使用样本数据集exrates1准备数据的说明。 图1提供了该数据集中时间序列的可视化。...R> par(mfrow = c(2, 1))R> plot(sim) 运行采样器 函数svsample,它用作C语言中实际采样器的R-wrapper 。...R> plot(res, showobs = FALSE)  为了提取标准化残差,可以在给定的svdraws对象上使用残差/残差方法。使用可选的参数类型,可以指定摘要统计的类型。...此方法返回svresid类的实向量,其中包含每个时间点所请求的标准化残差的摘要统计量。还有一种绘图方法,当通过参数origdata给定时,提供了将标准化残差与原始数据进行比较的选项。

1.9K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    如何使用libavcodec将.yuv图像序列编码为.h264的视频码流?

    对于其他编码器(如libx264)的私有参数,AVCodecContext结构可以使用成员priv_data保存编码器的配置信息。...format; }   AVPacket:   AVPacket结构用于保存未解码的二进制码流的一个数据包,在该结构中,码流数据保存在data指针指向的内存区中,数据长度为size字节。...priv_data,"preset","slow",0); av_opt_set(codec_ctx->priv_data,"tune","zerolatency",0); } //使用指定的...return -1; } return 0; } 3.编码循环体   在编码循环体中,至少需要实现以下三个功能:     (1)从视频源中循环获取输入图像     (2)将当前帧传入编码器进行编码...,获取输出的码流包     (3)输出码流包中的压缩码流到输出文件   读取图像数据和写出码流数据: //io_data.cpp int32_t read_yuv_to_frame(AVFrame

    34430

    RStudio发布新接口,在R语言中使用TensorFlow

    R语言是一种自由软件编程语言与操作环境,主要用于统计分析、绘图、数据挖掘、机器学习等。今日RStudio发布博文称,已为TensorFlow创建了R接口,使R用户能方便的使用TensorFlow。..._=1 在主题演讲中,JJ不仅描述了我们在TensorFlow上所做的工作,而且还深入地讨论了深度学习(深度学习是什么,它是如何工作的,以及它在未来几年可能与R的用户相关的地方,视频搬运自youtube...新的包和工具 TensorFlow的R接口由一套R包组成,它们为TensorFlow提供了各种接口,用于不同的任务和抽象层次,包括: keras – 神经网络的高级接口,主要用于快速实验。...tfruns包提供了跟踪和管理TensorFlow训练时的运行和实验的工具: ? 访问GPU 训练CNN或RNN可能非常耗费算力,而能够使用高端的英伟达GPU可以缩短训练时间。...为了解决这个问题,我们提供了多种在云中使用GPU的方法,包括: cloudml包,一个接到谷歌的托管机器学习引擎的R接口。

    1.1K60

    【Keras作者Chollet又一力作】深度学习R语言实战书籍和代码

    【导读】 Keras作者、谷歌大脑François Chollet最新撰写的深度学习R语言实战书籍(预计2018年1月出版)《Deep Learning with R》介绍深入学习使用R语言和强大Keras...使用深度学习,您可以创建一个将这些标签映射到图像的模型,仅从示例中学习。然后,这个系统可以自动应用到新的图像。在新数据中,其泛化性能也很棒,只需利用预训练的模型和新数据进行微调就可以得到不错的结果。...事实上,Kaggle.com上几乎所有的深度学习比赛都是使用Keras编码获得的。 关于本书 使用R语言进行深度学习适用于拥有一定R经验的开发人员和数据科学家,他们希望使用深度学习来解决实际问题。...书中介绍了什么 理解关键的机器学习概念 建立一个深度学习的环境 用于图像分类的卷积神经网络 可视化神经网络 用于文本和序列分类的递归神经网络 图像风格迁移,文本生成和图像生成 关于读者 你需要具有中级R...专知最近报道 Chollet 最新深度学习Python教程,详情请点击: 【Keras作者Chollet最新力作】深度学习Python教程实战书籍 J.J.Allaire J·是RStudio的创始人和

    1.5K60

    R语言中不能进行深度学习?

    下面我们将看到如何使用Tensorflow在R中安装Keras,并在RStudio的经典MNIST数据集上构建我们的第一个神经网络模型。 目录: 1.在后端安装带有张量的Keras。...2.使用Keras可以在R中构建不同类型的模型。 3.在R中使用MLP对MNIST手写数字进行分类。 4.将MNIST结果与Python中的等效代码进行比较。 5.结束笔记。...现在是将keras加载到R并安装TensorFlow的时候了。 library(keras) 默认情况下,RStudio加载TensorFlow的CPU版本。...现在我们在RStudio中安装了keras和TensorFlow,让我们在R中启动和构建我们的第一个神经网络来解决MNIST数据集 2.使用keras可以在R中构建的不同类型的模型 以下是使用Keras...事实上,R中的keras包创建了一个conda环境,并安装了在该环境中运行keras所需的一切。但是,让我更为激动的是,现在看到数据科学家在R中建立现实生活中的深层次的学习模型。

    1.3K90

    精通 TensorFlow 1.x:16~19

    检查点文件包含模型的序列化变量,例如权重和偏差。我们在前面的章节中学习了如何保存检查点。 冻结模型:合并检查点和模型文件,也称为冻结图。...在下一章中,我们将学习如何在 R 统计软件中使用 TensorFlow 和 RStudio 发布的 R 包。...keras包提供对 Keras API 的支持 tfruns包用于 TensorBoard 风格的模型和训练类可视化 在本章中,我们将学习如何在 R 中使用 TensorFlow,并将涵盖以下主题: 在...在 R 中,此 API 使用keras R 包实现。keras R 包实现了 Keras Python 接口的大部分功能,包括顺序 API 和函数式 API。...总结 在本章中,我们学习了如何在 R 中使用 TensorFlow 核心,TensorFlow 估计器和 Keras 包来构建和训练机器学习模型。

    4.9K10

    独家 | 手把手教你学习R语言(附资源链接)

    就业市场对R语言的需求正在迅速上升,微软等公司也同时承诺将致力让R语言成为数据科学通用语言。...课后作业 安装R和RStudio。 安装Rcmdr、rattle和Deducer程序包。以及推荐或依赖的程序包,包括GUI。 使用库命令加载安装程序,并打开GUI。...R语言允许使用特定包导入不同数据格式,从而使您工作更轻松,如下: readr:导入平面文件。 Readxl package:将excel文件转化为R语言。...(https://www.rstudio.com/resources/webinars/data-wrangling-with-r-and-rstudio/) 阅读并练习如何使用dplyr、tidyr和...学习本教程:介绍R语言空间数据,您会轻松地使用这些包。 源自Google maps和ggmap开放街道的静态图片,可用来创建可视化空间数据和模型。

    2.7K70

    R语言时间序列数据指数平滑法分析交互式动态可视化

    p=13971 R语言提供了丰富的功能,可用于绘制R中的时间序列数据。 包括: 自动绘制  xts  时间序列对象(或任何可转换为xts的对象)的图。...与常规R图一样(通过RStudio Viewer)在R控制台上使用。 无缝嵌入到  R Markdown  文档和  Shiny  Web应用程序中。...在这里,我们将范围选择组件 传递到原始图形上: graph(lungDeaths) %>% RangeSelector() 此示例使用magrittr  包中的  %>% (或“ pipe”)运算符 ...可以将多个下/值/上样式系列组合到带有阴影条的单个显示中。...1.R语言动态图可视化:如何、创建具有精美动画的图 2.R语言生存分析可视化分析 3.Python数据可视化-seaborn Iris鸢尾花数据 4.r语言对布丰投针(蒲丰投针)实验进行模拟和动态 5

    1.3K40

    R语言中的keras

    此API支持相同的代码无缝跑在CPU或GPU上;对用户友好,易于快速prototype深度学习模型;支持计算机视觉中的卷积网络、序列处理中的循环网络,也支持两种网络的任意组合;支持任意网络架构:多段输入或多段输出模型...devtools::install_github("rstudio/keras") library(keras) install_keras()##安装依赖环境 当然,这里默认安装的是CPU版本,如果需要安装...序列在这里指的是比如语音数据、文本数据、视频数据等一系列具有连续关系的数据。接下来我们看下序列模型的构建。...可以想象,如果整个网络有n个参数,那么我们可用的子网络个数为 2^n 。并且,当n很大时,每次迭代更新 使用的子网络基本上不会重复,从而避免了某一个网络被过分的拟合到训练集上。...batch_size一次训练所选取的样本数。BatchSize的大小影响模型的优化程度和速度。同时其直接影响到GPU内存的使用情况,假如你GPU内存不大,该数值最好设置小一点。

    2.5K40

    R语言时间序列数据指数平滑法分析交互式动态可视化

    p=13971 R语言提供了丰富的功能,可用于绘制R中的时间序列数据。 包括: 自动绘制  xts  时间序列对象(或任何可转换为xts的对象)的图。...与常规R图一样(通过RStudio Viewer)在R控制台上使用。 无缝嵌入到  R Markdown  文档和  Shiny  Web应用程序中。...在这里,我们将范围选择组件 传递到原始图形上: graph(lungDeaths) %>% RangeSelector() 此示例使用magrittr  包中的  %>% (或“ pipe”)运算符 ...可以将多个下/值/上样式系列组合到带有阴影条的单个显示中。...1.R语言动态图可视化:如何、创建具有精美动画的图 2.R语言生存分析可视化分析 3.Python数据可视化-seaborn Iris鸢尾花数据 4.r语言对布丰投针(蒲丰投针)实验进行模拟和动态 5

    1.7K20

    R语言时间序列数据指数平滑法分析交互式动态可视化

    p=13971 R语言提供了丰富的功能,可用于绘制R中的时间序列数据。 包括: 自动绘制 xts 时间序列对象(或任何可转换为xts的对象)的图。...与常规R图一样(通过RStudio Viewer)在R控制台上使用。 无缝嵌入到 R Markdown 文档和 Shiny Web应用程序中。...安装 可以在R控制台,R Markdown文档和Shiny应用程序中使用折线图。...此示例使用magrittr 包中的 %>% (或“ pipe”)运算符 来构成带有范围选择器的图表。可以使用类似的语法来自定义轴,系列和其他选项。...提供了许多用于定制系列和轴显示的选项。可以将多个下/值/上样式系列组合到带有阴影条的单个显示中。

    1.2K20

    R语言深度学习Keras循环神经网络(RNN)模型预测多输出变量时间序列

    在本教程中,我们将简要地学习如何用R中的Keras RNN模型来拟合和预测多输出的序列数据,你也可以对时间序列数据应用同样的方法。...我们将使用Keras R接口在R中实现神经网络: 准备数据 定义模型 预测和可视化结果 我们将从加载R的必要包开始。 library(keras) 准备数据 首先,我们将为本教程创建一个多输出数据集。...在这个例子中,步长值是2,我们将把x的第一和第二行以及y的第二行作为一个标签值。下一个元素成为x的第二和第三行以及y的第三行,这个序列一直持续到结束。下表解释了如何创建x和y数据的序列。...Adam优化器来定义序列模型。...R中的Keras rnn模型来拟合和预测多输出的顺序数据。

    2.2K10

    学习R语言,一篇文章让你从懵圈到入门

    broom:用于将统计模型的结果整理成数据框形式 zoo:定义了一个名zoo的S3类型对象,用于描述规则的和不规则的有序的时间序列数据。...broom:将统计模型结果整理成数据框形式 caret:一个用于解决分类和回归问题的数据训练综合工具包 glmnet:通过极大惩罚似然来拟合广义线性模型 gbm:用于实现随机梯度提升算法 xgboost...自动化分析 以下R包用于创建自动化分析结果的数据科学产品: shiny:一个使用R语言开发交互式web应用程序的工具。...IDE的API 程序开发 以下这些包主要用于开发自定义的R包: RStudio Desktop IDE:R的IDE。...drat:一个用于创建和使用备选R包库的工具 testthat:单元测试,让R包稳定、健壮,减少升级的痛苦。 roxygen2:通过注释的方式,生成文档,远离Latex的烦恼。

    3.7K60

    学习R语言,一篇文章让你从懵圈到入门

    broom:用于将统计模型的结果整理成数据框形式 zoo:定义了一个名zoo的S3类型对象,用于描述规则的和不规则的有序的时间序列数据。...:用于稀疏矩阵的基本线性代数运算 lme4:利用C++矩阵库 Eigen进行线性混合效应模型的计算 broom:将统计模型结果整理成数据框形式 caret:一个用于解决分类和回归问题的数据训练综合工具包...自动化分析 以下R包用于创建自动化分析结果的数据科学产品: shiny:一个使用R语言开发交互式web应用程序的工具。...IDE的API 程序开发 以下这些包主要用于开发自定义的R包: RStudio Desktop IDE:R的IDE。...drat:一个用于创建和使用备选R包库的工具 testthat:单元测试,让R包稳定、健壮,减少升级的痛苦。 roxygen2:通过注释的方式,生成文档,远离Latex的烦恼。

    4.1K31

    用Python的长短期记忆神经网络进行时间序列预测

    有关时间序列预测的持续性模型的更多信息,请参阅此文章: 如何使用Python进行时间序列预测的基线预测 现在我们已经有了数据集的性能基准,我们可以开始为数据开发一个LSTM模型 LSTM数据准备 在我们能够将...将时间序列转化为监督学习 Keras中的LSTM模型假定您的数据分为输入(X)和输出(y)。...,请参阅文章: 如何检查时间序列数据是否固定与Python 如何区分时间序列数据集与Python 将时间序列按比例缩放 像其他神经网络一样,LSTM希望数据大小能控制在神经网络使用的激活函数的范围内。...概要 在本教程中,您了解了如何开发用于时间序列预测的LSTM模型。 具体来说,你了解到: 如何准备用于开发LSTM模型的时间序列数据。 如何开发时间序列预测的LSTM模型。...如何使用强大的测试工具评估LSTM模型。

    9.6K113

    R语言中的神经网络预测时间序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告

    这增加了神经网络的鲁棒性,但也有助于减少训练时间。 使用MLP进行预测 使用R软件包,您可以生成外推(单变量)预测,也可以包含解释变量。 单变量预测 最简单的形式,您只需输入要建模的时间序列。...fit( hd = c(10,5)) 稍后我们将介绍如何自动选择节点数。根据我的经验(以及来自文献的证据),预测单个时间序列的常规神经网络无法从多个隐藏层中获得更好效果。预测问题通常并不那么复杂!...为此,我将尝试tsutils 包。...使用神经网络进行简单文本分类 R语言用神经网络改进Nelson-Siegel模型拟合收益率曲线分析 R语言基于递归神经网络RNN的温度时间序列预测 R语言神经网络模型预测车辆数量时间序列 R语言中的...BP神经网络模型分析学生成绩 matlab使用长短期记忆(LSTM)神经网络对序列数据进行分类 R语言实现拟合神经网络预测和结果可视化 用R语言实现神经网络预测股票实例 使用PYTHON中KERAS

    58310

    学习R语言,一篇文章让你从懵圈到入门

    broom:用于将统计模型的结果整理成数据框形式 zoo:定义了一个名zoo的S3类型对象,用于描述规则的和不规则的有序的时间序列数据。...broom:将统计模型结果整理成数据框形式 caret:一个用于解决分类和回归问题的数据训练综合工具包 glmnet:通过极大惩罚似然来拟合广义线性模型 gbm:用于实现随机梯度提升算法 xgboost...自动化分析 以下R包用于创建自动化分析结果的数据科学产品: shiny:一个使用R语言开发交互式web应用程序的工具。...IDE的API 程序开发 以下这些包主要用于开发自定义的R包: RStudio Desktop IDE:R的IDE。...drat:一个用于创建和使用备选R包库的工具 testthat:单元测试,让R包稳定、健壮,减少升级的痛苦。 roxygen2:通过注释的方式,生成文档,远离Latex的烦恼。

    3.7K40
    领券