你可以从其基本组件中组装一个图表:数据显示(即绘图的类型:线、条、框、散点图、轮廓等)、图例、标题、刻度标记和其他注释。 在pandas中,我们可能有多个数据列,并且带有行和列的标签。...展示轴网格(默认是打开的) ▲表9-3 Series.plot方法参数 DataFrame拥有多个选项,允许灵活地处理列;例如,是否将各列绘制到同一个子图中,或为各列生成独立的子图。...在DataFrame中,柱状图将每一行中的值分组到并排的柱子中的一组。...▲图9-19 用错误栏按天显示小费百分比 seaborn中的绘图函数使用一个data参数,这个参数可以是pandas的DataFrame。其他的参数则与列名有关。...因为day列中有多个观测值,柱子的值是tip_pct的平均值。柱子上画出的黑线代表的是95%的置信区间(置信区间可以通过可选参数进行设置)。
- 第11行代码中的shape是pandas模块中DataFrame对象的一个属性,它返回的是一个元组,其中有两个元素,分别代表DataFrame的行数和列数。...melt()是pandas模块中DataFrame对象的函数,用于将列名转换为列数据,效果如下图所示,以满足后续使用的ols()函数对数据结构的要求。...xlsx') workbook.close() app.quit() 案例09 使用描述统计和直方图制定目标 代码文件:使用描述统计和直方图制定目标.py - 数据文件:描述统计.xlsx import...在工作簿中还可以看到如下图所示的直方图,根据直方图可以看出,月销售额基本上以18为基数向两边递减,即18最普遍。...在3.7.2节中曾使用过figure()函数,这里再详细介绍一下该函数的语法格式和常用参数含义。- 第16行代码中的hist()是Matplotlib模块中的函数,用于绘制直方图。
数据可视化实战 Step1 读取数据,设置特征 和 标签 import pandas as pd # 导入Pandas数据处理工具 # 读取数据 data = pd.read_csv('medical-data-demo.csv...first_three_features = features[:3] # 设置画布和子图,这里是三个子图 fig, axes = plt.subplots(nrows=3, ncols=1, figsize...Step6 部分特征的相关性热图 相关性热图作为一种可视化工具,可直观地展现两个或多个变量之间的相关性强度。...在热图的呈现中,通过矩阵的形式展示数据集中各变量之间的相关性,其中每个单元格代表两个变量之间的相关性系数,并以颜色深浅来直观表示相关性的强弱。...绘制相关性热图,仍然使用Seaborn来绘制: # 绘制相关性热图 correlation_matrix = pd.DataFrame(X_selected_standardized, columns
概述 我们在上一篇文章初识 Pandas中已经对 Pandas 作了一些基本介绍,本文我们进一步来学习 Pandas 的一些使用。 2....缺失项 在现实中我们获取到的数据有时会存在缺失项问题,对于这样的数据,我们通常需要做一些基本处理,下面我们通过示例来看一下。...5.2 条形图 纵置条形图代码实现如下所示: import pandas as pd, numpy as np, matplotlib.pyplot as plt df = pd.DataFrame(...5.3 直方图 直方图代码实现如下所示: import pandas as pd, numpy as np, matplotlib.pyplot as plt df = pd.DataFrame({'...5.5 饼图 饼图代码实现如下所示: import pandas as pd, numpy as np, matplotlib.pyplot as plt df = pd.DataFrame([30,
工具:matplotlib,pandas import matplotlib.pyplot as plt import pandas as pd from pandas import Series, DataFrame...image.png 数据分析中的常用图形: 线型图: 除了matplotlib, pandas的Series和DataFrame都具有许多根据其自身数据组织特点来创建标准绘图的高级绘图方法。...直方图: 直方图histogram是一种可以对值的频率进行离散化显示的柱状图。可以通过调用Series或者DataFrame的hist函数得到。...数据点被分割到离散的,间隔均匀的面元中,绘制的是各个面元中数据点的数量。其中参数bins表示面元的单位,可以用normed设置是否进行归一化。 密度图: 密度图经常和直方图绘制在一起。...密度图也被称为KDE(kernel density estimate,核密度估计)。调用plot时在kind设置为‘kde’就可以生成密度图。
具体而言,在本章中,我们将研究以下概念: 连接多个 Pandas 对象中的数据 合并多个 Pandas 对象中的数据 如何控制合并中使用的连接类型 在值和索引之间转换数据 堆叠和解除堆叠数据 在宽和长格式之间融合数据...总结 在本章中,我们研究了在一个或多个DataFrame对象中合并和重塑数据的几种技术。 我们通过检查如何组合来自多个 Pandas 对象的数据来开始本章。...然后,我们研究了如何沿行轴和列轴连接多个DataFrame对象。 由此,我们随后研究了如何基于多个DataFrame对象中的值,使用 Pandas 执行类似于数据库的连接和数据合并。...用核密度图估计分布 散点图矩阵与多个变量之间的相关性 热图与多个变量之间的关系强度 最后一步将检查如何通过将绘图划分为多个子部分来创建合成绘图,以便能够在单个图形画布中渲染多个绘图。...在单个图表中手动绘制多个图 通过将多个图彼此相邻显示来对比数据通常很有用。 我们已经看到,pandas 对几种类型的图自动执行此操作。 也可以在同一画布上手动渲染多个图。
这里列举下Pandas中常用的函数和方法,方便大家查询使用。...格式 to_sql:向数据库写入dataframe格式数据 连接 合并 重塑 merge:根据指定键关联连接多个dataframe,类似sql中的join concat:合并多个dataframe,类似...transform:对每个分组应用转换函数,返回与原始数据形状相同的结果 rank:计算元素在每个分组中的排名 filter:根据分组的某些属性筛选数据 sum:计算分组的总和 mean:计算分组的平均值...:绘制堆积图 pandas.DataFrame.plot.bar:绘制柱状图 pandas.DataFrame.plot.barh:绘制水平条形图 pandas.DataFrame.plot.box:绘制箱线图...:绘制直方图 pandas.DataFrame.plot.line:绘制线型图 pandas.DataFrame.plot.pie:绘制饼图 pandas.DataFrame.plot.scatter:
或者使用豆瓣镜像 pip install -i https://pypi.douban.com/simple xlsxwriter 安装成功之后,来看一下如何使用 将多个DataFrame数据保存到...我们来实现一下如何将多个DataFrame数据保存在一张Excel表格当中,并且分成不同的sheet import pandas as pd # 创建几个DataFrame数据集 df1 = pd.DataFrame...Excel文件,在不同的Sheet当中分别存放着指定的数据集 将多个DataFrame数据集放在一张Sheet当中 将多个DataFrame数据集放在同一张Sheet当中,通过当中的参数startcol...下面我们来看一下,如何利用Pandas来根据表格中的数据绘制柱状图,并且保存在Excel表格当中,在xlsxwriter模块当中有add_chart()方法,提供了9中图表的绘制方法,我们先来看一下柱状图的绘制...,小编也在上面提到,xlsxwriter模块提供了绘制9中图表的方法,分别是 折线图:line 柱状图:column 水平折线图:bar 面积图:area 饼图:pie 散点图:scatter 雷达图:
Pandas是一个基于Numpy的数据分析库,它提供了多种数据统计和数据分析功能,使得数据分析人员在Python中进行数据处理变得方便快捷,接下来将使用Pandas对MovieLens 1M数据集进行相关的数据处理操作...2、读取数据集Pandas提供了多种方式来读取不同类型数据,本文使用read_csv来读取Movielens-1M各个子数据集,该方法将表格型数据读取为DataFrame对象,这是Pandas核心数据结构之一...图片图片注意:若有的时候数据集列数过多,无法展示多列,出现省略号,此时可以使用pandas中的set_option()进行显示设置。...2、使用pandas 结合matplotlib绘制数据分析图① 不同题材的电影数量柱形图首先根据电影题材进行,然后选取票房最好的15个系列进行统计画图。...图片图片图片③ 使用直方图表示评分分布情况根据数据呈现的评分分布直方图可见,评分为4分的数量最多图片图片总结通过上面的例子,可以了解Pandas在数据处理方面具有非常好的特性,它所包含的数据结构和数据处理工具使得数据清洗
在 Python 中,不需要知道很多关于正则表达式的知识,但它们是一个强大的工具,可用于匹配和替换某些字符串或子字符串。如果你想了解更多,请参考以下教程。 ? 信任这个网站的一些代码。...使用一行代码,我们已经将这些数据分配并保存到 Pandas dataframe 中 - 事实证明是这种情况,字典是要转换为 dataframe 的完美数据格式。 ?...在多个过滤条件之前,你想要了解它的工作原理。你还需要了解 Python 中的基本操作符。为了这个练习的目的,你只需要知道「&」代表 AND,而「|」代表 Python 中的 OR。...有关数据可视化选项的综合的教程 - 我最喜欢的是这个 Github readme document (全部在文本中),它解释了如何在 Seaborn 中构建概率分布和各种各样的图。...有了这个强大的直方图方法 (hist()),我们现在可以生成一个直方图,显示出大部分人均 GDP 在 5 万到 7 万美元之间!
dataframe.plot.func() series.plot.func() func()主要是日常比较基础的图形,如下: 折现图(line) 条形图(bar) 直方图(hist) 箱箱型(box...) 面积图(area) 散点图(scatter) 饼图(pie) 六边形箱型图(hexbin) 核密度图(kde) 子图 import numpy as np import pandas as pd import...(500)}) ax = df.plot.hexbin(x='x', y='y', gridsize=15, figsize=(10,8)) 9)子图 plot()的参数设置subplots=True...即可自动对dataframe数据生成子图的可视化图形。...设置,(2,2)代表行列数量都为2的可视化图。
使用子图 有时候我们需要将多张子图展示在一起,可以使用 ==subplot() ==实现。即在调用 plot() 函数之前需要先调用 subplot() 函数。...有时候我们需要不同大小的子图。比如将上面第一 张子图完全放置在第一行,其他的子图都放在第二行。...这些包括 - bar或barh为条形 hist为直方图 boxplot为盒型图 area为“面积” scatter为散点图 条形图 现在通过创建一个条形图来看看条形图是什么。...df.plot.barh(stacked=True) 直方图 可以使用plot.hist()方法绘制直方图。...', 'd']) df.plot.scatter(x='a', y='b') 饼状图 饼状图可以使用DataFrame.plot.pie()方法创建。
,本文就将介绍如何用Pandas更快的进行数据可视化!...基本使用,学会制作套路 首先我们使用pandas随机生成示例数据 import pandas as pd df= pd.DataFrame(np.random.rand(8, 4), columns=[...制作子图可以吗? 只需要设置subplots=True就行了,子图位置、大小调整方式和Matplotlib设置一样!...以上就是关于如何在使用Python更快速的对数据进行可视化,我们可以发现,在很多情况下,使用Pandas直接进行绘图会显得更加高效便捷!...但本文的目的并不是让你彻底放弃Matplotlib,在使用pandas绘图时很多参数设置都需要参考Matplotlib,所以我们应该在点亮这项技能后,能根数据和场景的不同,选择一个最合适的工具来完成可视化
") 当然在使用的时候,记得先设置 绘制后端为pandas_bokeh import pandas as pd pd.set_option('plotting.backend', 'pandas_bokeh...1000)) df = df.cumsum() df = df + 50 df.plot_bokeh(kind="line") #等价于 df.plot_bokeh.line() 折线图 在绘制过程中...,我们还可以设置很多参数,用来设置可视化图表的一些功能: kind : 图表类型,目前支持的有:“line”、“point”、“scatter”、“bar”和“histogram”;在不久的将来,更多的将被实现为水平条形图...直方图 在绘制直方图时,有不少参数可供选择: bins:确定用于直方图的 bin,如果 bins 是 int,则它定义给定范围内的等宽 bin 数量(默认为 10),如果 bins 是一个序列,它定义了...show_average:如果为 True,则还显示直方图的平均值,默认值:False p_hist = df_hist.plot_bokeh.hist( y=["a", "b"],
在 Python 中,不需要知道很多关于正则表达式的知识,但它们是一个强大的工具,可用于匹配和替换某些字符串或子字符串。如果你想了解更多,请参考以下内容。 ?...使用一行代码,我们已经将这些数据分配并保存到 Pandas dataframe 中 —— 事实证明是这种情况,字典是要转换为 dataframe 的完美数据格式。 ?...在多个过滤条件之前,你想要了解它的工作原理。你还需要了解 Python 中的基本操作符。为了这个练习的目的,你只需要知道「&」代表 AND,而「|」代表 Python 中的 OR。...有关数据可视化选项的综合的教程 – 我最喜欢的是这个 Github readme document (全部在文本中),它解释了如何在 Seaborn 中构建概率分布和各种各样的图。...有了这个强大的直方图方法 (hist()),我们现在可以生成一个直方图,显示出大部分人均 GDP 在 5 万到 7 万美元之间!
数据集和设置 看下如何启动 pandas_profiling 库并从数据框中生成报告了。...describe 函数输出: df.describe(include='all') 注意我使用了describe 函数的 include 参数设置为"all",强制 pandas 包含要包含在摘要中的数据集的所有数据类型...导入 pandas_profiling from pandas_profiling import ProfileReport 分析DataFrame有两种方法: 可以在 Pandas DataFrame...数值变量 对于数值数据类型特征,可以获得有关不同值、缺失值、最小值-最大值、平均值和负值计数的信息。还可以获得直方图形式的小表示值。...如何保存报告? 到目前为止,我们已经了解了如何仅使用一行代码或函数生成DataFrame报告,以及报告包含的所有功能。
创建子图及间隔设置 ax1 = fig3.add_subplot(,,) x = range(len(data)) y1 = data['A_sale'] y2 = -data['B_sale']...# 2、相对数比较 → 相除 # (2)比例分析 # 在分组的基础上,将总体不同部分的指标数值进行对比,其相对指标一般称为“比例相对数” # 比例相对数 = 总体中某一部分数值 / 总体中另一部分数值...直方图初判 / QQ图判断 / K-S检验 # 直方图初判 s = pd.DataFrame(np.random.randn()+,columns = ['value']) print(s.head(...qq图,直方图作为参考 s = pd.DataFrame(np.random.randn()+,columns = ['value']) print(s.head()) # 创建随机数据 mean...(,,) # 创建子图3 ax3.plot(s_r['p'],s_r['value'],'k.'
对象中包含的数据可以以多种方式组合: pandas.merge 基于一个或多个键连接 DataFrame 中的行。...在许多情况下,DataFrame 中的默认整数标签在连接时最好被丢弃。 pandas 中的concat函数提供了一种一致的方法来解决这些问题。我将给出一些示例来说明它是如何工作的。...它应该足以教会您如何上手。matplotlib 图库和文档是学习高级功能的最佳资源。 图和子图 matplotlib 中的绘图位于 Figure 对象中。...9.15:水平和垂直条形图 使用 DataFrame,条形图将每行中的值分组在条形图中,侧边显示,每个值一个条形图。...因为在day的每个值中有多个观察值,所以条形图是tip_pct的平均值。在条形图上画的黑线代表 95%的置信区间(可以通过可选参数进行配置)。
pandas将从CSV中提取数据到DataFrame中,这时候数据可以被看成是一个Excel表格,然后让你做这样的事情: 计算统计数据并回答有关数据的问题,比如每一列的平均值、中值、最大值或最小值是多少...C列中的数据分布情况如何? 通过删除缺失的值和根据某些条件过滤行或列来清理数据 在Matplotlib的帮助下可视化数据。绘制条形图、线条、直方图、气泡等。...2 pandas和其它工具包的关系 pandas不仅是数据科学工具箱的中心组件,而且与该集合中的其他工具包一起使用: pandas构建在NumPy包的顶部,这意味着在pandas中使用或复制了许多NumPy...DataFrame和Series在许多操作上非常相似,一个操作可以执行另一个操作,比如填充空值和计算平均值。...数据中的每个(键、值)项对应于结果DataFrame中的一个列。这个DataFrame的索引在创建时被指定为数字0-3,但是我们也可以在初始化DataFrame时创建自己的索引。
除默认线图外,还可以绘制多种样式,可以使用 DataFrame.plot.[图类型参数] 方法进行不同图形的选择。...'g','h']) df.plot.bar() 运行结果如下: [52712dd2f19684654ad6eeaab6c0bdf1.png] 产生堆叠的柱状图, 可以设置 stacked=True import...True) 运行结果如下: [6492f3ed6b0976ceb91f03f8abbb9f7d.png] 要获取水平条形图,可以使用barh方法: import pandas as pd import...) 运行结果如下: [3e9d68642573bbf4f3678782d574aefa.png] 三、直方图 可以使用 plot.hist() 方法绘制直方图。...本系列教程涉及的速查表可以在以下地址下载获取: Pandas速查表 NumPy速查表 Matplotlib速查表 Seaborn速查表 拓展参考资料 Pandas可视化教程 Seaborn官方教程 ShowMeAI
领取专属 10元无门槛券
手把手带您无忧上云