pandas数据处理功能强大,可以方便的实现数据的合并与拼接,具体是如何实现的呢?...参数介绍: left和right:两个不同的DataFrame; how:连接方式,有inner、left、right、outer,默认为inner; on:指的是用于连接的列索引名称,必须存在于左右两个...DataFrame中,如果没有指定且其他参数也没有指定,则以两个DataFrame列名交集作为连接键; left_on:左侧DataFrame中用于连接键的列名,这个参数左右列名不同但代表的含义相同时非常的有用...; sort:默认为True,将合并的数据进行排序,设置为False可以提高性能; suffixes:字符串值组成的元组,用于指定当左右DataFrame存在相同列名时在列名后面附加的后缀名称,默认为(...多键连接时将连接键组成列表传入,例:pd.merge(df1,df2,on=['key1','key2'] ? ? 如果两个对象的列名不同,可以使用left_on,right_on分别指定 ? ?
另外,concat也可通过设置axis=1参数实现横向两表的横向拼接,但更常用于纵向的union操作。...") // 3、两个DataFrame中连接字段不同名,此时需传入判断连接条件 df1.join(df2, df1("col1")===df2("col2")) // 注意,上述连接条件中,等于用===...loc是用于数据读取的方法,由于其也支持传入逻辑判断条件,所以自然也可用于实现数据过滤,这也是日常使用中最为频繁一种; 通过query接口实现,提起query,首先可能想到的便是SQL中Q,实际上pandas...group by关键字用于分组聚合,实际上包括了分组和聚合两个阶段,由于这一操作属于比较规范化的操作,所以Pandas和Spark中也都提供了同名关键字,不同的是group by之后所接的操作算子不尽相同...03 小节 对标SQL标准查询语句中的常用关键字,重点对Pandas和Spark中相应操作进行了介绍,总体来看,两个计算框架均可实现SQL中的所有操作,但Pandas实现的接口更为丰富,传参更为灵活;而
Pandas读写Excel文件 参数名称 说明 io 接收string,表示文件路径,无默认 sheetname 接收string、int,代表excel表内数据的分表位置,默认为0 header 接收...二、合并数据 在实际的数据分析中,对同一分析对象,可能有不同的数据来源,因此,需要对数据进行合并处理。...left 参与合并的左侧DataFrame right 参与合并的右侧DataFrame how 连接方法:inner,left,right,outer(交、左、右、并) on 用于连接的列名(默认为相同的列名...的列名不相同,可以单独指定。...,虽然可以人为进行重复列名的修改,但merge函数提供了suffixes用于处理该问题。
分析前操作 我们使用read读取数据集时,可以先通过info 方法了解不同字段的条目数量,数据类型,是否缺失及内存占用情况 案例:找到小成本高口碑电影 思路:从最大的N个值中选取最小值 movie2....# False:删除所有重复项 数据连接(concatenation) 连接是指把某行或某列追加到数据中 数据被分成了多份可以使用连接把数据拼接起来 把计算的结果追加到现有数据集,可以使用连接 import...('data/concat_3.csv') 我们可以使用concat方法将三个数据集加载到一个数据集,列名相同的直接连接到下边 在使用concat连接数据时,涉及到了参数join(join = 'inner...这种方式添加一列 数据连接 merge 数据库中可以依据共有数据把两个或者多个数据表组合起来,即join操作 DataFrame 也可以实现类似数据库的join操作,Pandas可以通过pd.join命令组合数据...','Milliseconds']],on='GenreId',how='outer') concat: Pandas函数 可以垂直和水平地连接两个或多个pandas对象 只用索引对齐 默认是外连接(也可以设为内连接
其中,由于pandas允许数据类型是异构的,各列之间可能含有多种不同的数据类型,所以dtype取其复数形式dtypes。...ix,可混合使用标签和数字索引,但往往容易混乱,所以现已弃用 05 数据处理 ?...,要求每个df内部列名是唯一的,但两个df间可以重复,毕竟有相同列才有拼接的实际意义) merge,完全类似于SQL中的join语法,仅支持横向拼接,通过设置连接字段,实现对同一记录的不同列信息连接,支持...inner、left、right和outer4种连接方式,但只能实现SQL中的等值连接 join,语法和功能与merge一致,不同的是merge既可以用pandas接口调用,也可以用dataframe对象接口调用...2 分组聚合 pandas的另一个强大的数据分析功能是分组聚合以及数据透视表,前者堪比SQL中的groupby,后者媲美Excel中的数据透视表。
语句如下: pd.merge(df1, df2, on = 'key') 如果对象的列名是不同的,比如df1的联合列名字key改为key1,df2的联合列名字key改为key2,此时语句应为: pd.merge...默认情况下,merge做的是内连接('inner join'),结果是两个表的交集;其他联合方法还有left,right和outer,传入how参数可以指定联合方法。...outer是两个表的并集: pd.merge(df1, df2, how = 'outer') how参数的不同连接类型 选项 行为 inner 只对两张表的交集部分联合 outer 两张表的并集...右连接相反,将右表的连接列全部保留。 当使用多个键进行合并,传入一个列名列表,即on=['key1', 'key2']。...两个数据集,它们的索引全部或部分相同。
一文搞定pandas的数据合并 在实际处理数据业务需求中,我们经常会遇到这样的需求:将多个表连接起来再进行数据的处理和分析,类似SQL中的连接查询功能。...注意4组数据的不同 ?...使用默认参数 两种不同的写法,效果相同 ? 参数how how参数的取值有4种: inner(默认) outer right left ? ? ? ?...参数on 用于连接的列索引列名,必须同时存在于左右的两个dataframe型数据中,类似SQL中两个表的相同字段属性 如果没有指定或者其他参数也没有指定,则以两个dataframe型数据的相同键作为连接键...参数suffixes 合并的时候一列两个表同名,但是取值不同,如果都想要保存下来,就使用加后缀的方法,默认是 _x,_y,可以自己指定 ? ? 参数sort 对连接的时候相同键的取值进行排序 ? ?
,从而自动匹配列名,即使它们在两个数据框架中的顺序不同。...如果你以前使用过关系数据库,那么它的概念与SQL查询中的JOIN子句相同。...图5-3.联接类型 使用join,pandas使用两个数据框架的索引来对齐行。内联接(innerjoin)返回的数据框架只包含索引重叠的行。...右联接(rightjoin)获取右表df2中的所有行,并将它们与df1中索引相同的行相匹配。...表5-5.联接类型 让我们看看它们在实践中是如何运作的,将图5-3中的示例付诸实践: 如果要在一个或多个数据框架列上联接而不是依赖索引,那么使用“合并”(merge)而不是“联接”(join)。
大多数数据科学家可能会赞扬Pandas进行数据准备的能力,但许多人可能无法利用所有这些能力。...操作数据帧可能很快会成为一项复杂的任务,因此在Pandas中的八种技术中均提供了说明,可视化,代码和技巧来记住如何做。 ?...可以按照与堆叠相同的方式执行堆叠,但是要使用level参数: df.unstack(level = -1)。 Merge 合并两个DataFrame是在共享的“键”之间按列(水平)组合它们。...“inner”:仅包含元件的键是存在于两个数据帧键(交集)。默认合并。 记住:如果您使用过SQL,则单词“ join”应立即与按列添加相联系。...例如,考虑使用pandas.concat([df1,df2])串联的具有相同列名的 两个DataFrame df1 和 df2 : ?
多表操作 merge合并 pandas.merge可根据一个或多个键将不同DataFrame中的行合并起来 pd.merge(left, right)# 默认merge会将重叠列的列名当做键,即how...='inner',有多个重复列名则选取重复列名值都相同的行 # 指定“on”作为连接键,left和right两个DataFrame必须同时存在“on”列,连接键也可N对N(少用) pd.merge(left..."])#两个表取key1,key2都相同的行,right的的列放在left列右边 pd.merge(left, right, left_on="key", right_on="key")#两个表取...,重新给新的DataFrame设置从0开始的index pd.concat([df1,df2], ignore_index=True) append 使用场景:表头一致的多张表,进行连接(上下连接...) df1.append(df2).append(df3) combin_first 数据填补 使用场景:有两张表left和right,一般要求它们的表格结构一致,数据量也一致,使用right的数据去填补
python merge()的连接 1、说明 pandas提供了一个类似于关系数据库的连接(join)操作的方法merage,可以根据一个或多个键将不同DataFrame中的行连接起来。...必须存在右右两个DataFrame对象中,如果没有指定且其他参数也未指定则以两个DataFrame的列名交集做为连接键 left_on:左则DataFrame中用作连接键的列名;这个参数中左右列名不相同...,但代表的含义相同时非常有用。...right_on:右则DataFrame中用作 连接键的列名 left_index:使用左则DataFrame中的行索引做为连接键 right_index:使用右则DataFrame中的行索引做为连接键...在大多数情况下设置为False可以提高性能 suffixes:字符串值组成的元组,用于指定当左右DataFrame存在相同列名时在列名后面附加的后缀名称,默认为(’_x’,’_y’) copy:默认为True
表示是否在原表上进行操作。默认为False 2. 属性内容重复 属性内容重复是指数据中存在一个或多个属性名称不同,但数据完全相同。...堆叠合并数据 数据堆叠就是简单地把两个表拼在一起,也可以称为轴向连接、绑定或连接。根据连接轴不同的方向,数据堆叠可以分为横向堆叠和纵向堆叠。...横向堆叠: 纵向堆叠: 横向堆叠即将两个表在X轴向连接到一起,纵向堆叠是将两个数据表在Y轴向上拼接,可以利用Python中Pandas库的concat函数对两个表进行横向或者纵向堆叠,其基本语法格式如下...当需要合并的表索引或列名不完全一样时,可以使用join参数选择是内连接还是外连接,在内连接的情况下,仅仅返回索引或列名的重叠部分;在外连接的情况下,则显示索引或列名的并集部分数据,不足的地方则使用空值填补...主键合并数据 主键合并即一个或多个键将两个数据集的行连接起来,如果两张包含不同字段的表含有同一个主键,那么可以根据相同的主键将两张表拼接起来,结果集列数为两张标的列数和减去连接键的数量,如图所示。
一、引言在数据分析领域,Pandas是一个强大的Python库,它提供了灵活高效的数据结构和数据分析工具。其中,数据的合并操作是数据预处理中不可或缺的一部分。...它是一种简单的拼接方式,适用于多种场景,例如将不同时间段的数据纵向堆叠,或者将具有相同索引的不同特征横向拼接。(二)参数解析objs:要连接的对象列表,可以是DataFrame或Series。...axis:指定连接的方向,默认为0,表示按行连接;1表示按列连接。join:控制连接时如何处理索引对齐。可选值有'inner'(取交集)和'outer'(取并集),默认为'outer'。...(三)案例分析假设我们有两个关于学生成绩的DataFrame,分别记录了语文成绩和数学成绩,且它们具有相同的索引(学生编号)。我们可以使用concat将其横向拼接。...how:指定合并的方式,常见的有'inner'(内连接)、'outer'(外连接)、'left'(左连接)、'right'(右连接)。on:指定用于合并的列名,当左右两侧的列名相同时使用此参数。
这里两个数字都是闭合的,案例中[7:11]则选取的是第8行至第12行(pandas从0开始编号) 二、提取任意列 1、按照列名提取单列 ? 2、按照列名提取多列 ?...所以带%的文本转数字是比较麻烦的~麻烦程度与Excel处理该类问题相同。 那如何解决呢? ?...费了九年二虎之力,终于分别实现了不同列的判断条件。 如何把两列混合在一起呢?如何以且关系进行组合判断呢? ?...变量[(条件1)&(条件2)&(条件N)] 多条件且关系筛选其实就是将不同条件用括号括起来后使用&字符连接~ 2、或关系筛选 前面有了且关系的铺垫,或关系其实就是把&变更为 | 即可!...,因为可以通过我最喜欢的通配符实现~ pandas只能使用字符串函数find函数,该函数用法与Excel相同~ ?
Pandas 透视表概述 数据透视表(Pivot Table)是一种交互式的表,可以进行某些计算,如求和与计数等。所进行的计算与数据跟数据透视表中的排列有关。...之所以称为数据透视表,是因为可以动态地改变它们的版面布置,以便按照不同方式分析数据,也可以重新安排行号、列标和页字段。每一次改变版面布置时,数据透视表会立即按照新的布置重新计算数据。...比 pandas.DataFrame.pivot_table 多了一个参数data,data就是一个dataframe,实际上这两个函数相同 pivot_table参数中最重要的四个参数 values...:dataframe.pivot_table() index:行索引,传入原始数据的列名 columns:列索引,传入原始数据的列名 values: 要做聚合操作的列名 aggfunc:聚合函数 custom_info.pivot_table...() # 使得结果更美观 或使用unsatck: custom_info.groupby(['注册年月','会员等级'])['会员卡号'].count().unstack() 使用透视表可以实现相同效果
如果调用append()的DataFrame和传入append()的DataFrame中有不同的列,则添加后会在不存在的列填充空值,这样即使两个DataFrame有不同的列也不影响添加操作。...设置verify_integrity参数为True,是为了避免结果中的行索引重复,但很可能会导致添加失败,所以需要先观察原始数据是否适合。...concat(): 连接操作,可以连接多个DataFrame,可以设置按行合并还是按列合并。有inner、outer、left、right四种不同的连接方式。...合并时根据指定的连接列(或行索引)和连接方式来匹配两个DataFrame的行。可以在结果中设置相同列名的后缀和显示连接列是否在两个DataFrame中都存在。...合并时根据指定的连接列(或行索引)和连接方式来匹配两个DataFrame的行,也可以设置相同列名的后缀,所以有时候join()和merge()可以相互转换。
本篇博文主要是对之前的几篇关于pandas使用技巧的小结,内容包含: 创建S型或者DF型数据,以及如何查看数据 选择特定的数据 缺失值处理 apply使用 合并和连接 分组groupby机制 重塑reshaping...透视表使用 ---- 创建数据 S型数据 import numpy as np import pandas as pd pd.Series([1, 3, 5, np.nan, 6, 89]) #...:用于层次化索引 ignore_index:不保留连接轴上的索引,产生新的索引 连接merge 可根据⼀个或多个键将不同DataFrame中的⾏连接起来,它实现的就是数据库的join操作 ,就是数据库风格的合并...常用参数表格 参数 说明 left 参与合并的左侧DF right 参与合并的右侧DF how 默认是inner,inner、outer、right、left on 用于连接的列名,默认是相同的列名...values是生成的透视表中的数据 index是透视表的层次化索引,多个属性使用列表的形式 columns是生成透视表的列属性
类似于sql中的on用法。可以不指定,默认以2表中共同字段进行关联。 left_on和right_on:两个表里没有完全一致的列名,但是有信息一致的列,需要指定以哪个表中的字段作为主键。...True表示按连结主键(on 对应的列名)进行升序排列。 【例】创建两个不同的数据帧,并使用merge()对其执行合并操作。 关键技术:merge()函数 首先创建两个DataFrame对象。..."sales.csv" ,使用Python的join()方法,将两个数据表切片数据进行合并。...【例】使用Concat连接对象。 关键技术: concat函数执行沿轴执行连接操作的所有工作,可以让我们创建不同的对象并进行连接。...关键技术:采用运算符号’+'可以对数组进行求和运算操作,但需要各个数组的维度相同, 程序如下所示: 【例】请使用Python对数值和数组进行求积运算操作。
2、从ndarray创建一个系列 如果数据是ndarray,则传递的索引必须具有相同的长度。...5、序列的聚合统计 Series有很多的聚会函数,可以方便的统计最大值、求和、平均值等 ? 6、DataFrame(数据帧) DataFrame是带有标签的二维数据结构,列的类型可能不同。...15、分类汇总 可以按照指定的多列进行指定的多个运算进行汇总。 ? 16、透视表 透视表是pandas的一个强大的操作,大量的参数完全能满足你个性化的需求。 ?...19、数据合并 两个DataFrame的合并,pandas会自动按照索引对齐,可以指定两个DataFrame的对齐方式,如内连接外连接等,也可以指定对齐的索引列。 ?...20、更改列名(columns index) 更改列名我认为pandas并不是很方便,但我也没有想到一个好的方案。 ?
点 前言 之前已经多篇文章关于使用 pandas 处理数据,那仅仅是工作的开端,只是把数据整理完毕而不继续探索数据,那么就白白浪费了 Python 这样的好工具。...---- 本文概要 通过本文你将会学到以下知识点: pandas 连接多表数据 如何高效编写代码,以方便多维度汇总数据 直接在 DataFrame 中可视化输出,如下: ---- 案例介绍 案例数据有...以下是每个表的概要信息: sales :记录每个游戏的销售情况(销量、用户评分如何?)...我们希望通过数据,回答以下一些问题: 整体游戏市场的销量如何? 各个主机的游戏销量如何? 什么类型的游戏比较好卖或受欢迎?...因此,我们希望每次调用时,只需要告诉 pandas 以下信息即可: 用哪些维度字段做汇总 使用哪个字段做统计,统计方法是什么(平均、求和还是计数),统计后的列名字是什么 ---- ---- 首先定义一个方法
领取专属 10元无门槛券
手把手带您无忧上云