首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

可视化图表样式使用大全

条形图的离散数据是分类数据,针对的是单一类别中的数量多少,而不会显示数值在某时间段内的持续发展。...堆叠式条形图 ? 跟多组条形图不同,堆叠式条形图 (Stacked Bar Graph) 将多个数据集的条形彼此重迭显示,适合用来显示大型类别如何细分为较小的类别,以及每部分与总量有什么关系。...不等宽柱状图 (Marimekko Chart)也称为「马赛克图」,用来显示分类数据中一对变量之间的关系,原理类似双向的 100% 堆叠式条形图,但其中所有条形在数值/标尺轴上具有相等长度,并会被划分成段...分组式面积图在相同的零轴开始,而堆叠式面积图则从先前数据系列的最后数据点开始。...散点图 (Scatterplot) 也称为「点图」、「散布图」或「X-Y 点图」,用来显示两个变量的数值(每个轴上显示一个变量),并检测两个变量之间的关系或相关性是否存在。

9.4K10

常用60类图表使用场景、制作工具推荐!

弧线图 弧线图 (Arc Diagram) 是二维双轴图表以外另一种数据表达方式。在弧线图中,节点将沿着 X轴放置,然后再利用弧线表示节点与节点之间的连接关系。...条形图的离散数据是分类数据,针对的是单一类别中的数量多少,而不会显示数值在某时间段内的持续发展。...堆叠式条形图 跟多组条形图不同,堆叠式条形图 (Stacked Bar Graph) 将多个数据集的条形彼此重迭显示,适合用来显示大型类别如何细分为较小的类别,以及每部分与总量有什么关系。...不等宽柱状图 不等宽柱状图 (Marimekko Chart)也称为「马赛克图」,用来显示分类数据中一对变量之间的关系,原理类似双向的 100% 堆叠式条形图,但其中所有条形在数值/标尺轴上具有相等长度...散点图 散点图 (Scatterplot) 也称为「点图」、「散布图」或「X-Y 点图」,用来显示两个变量的数值(每个轴上显示一个变量),并检测两个变量之间的关系或相关性是否存在。

8.9K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    60 种常用可视化图表,该怎么用?

    弧线图 弧线图 (Arc Diagram) 是二维双轴图表以外另一种数据表达方式。在弧线图中,节点将沿着 X轴放置,然后再利用弧线表示节点与节点之间的连接关系。...条形图的离散数据是分类数据,针对的是单一类别中的数量多少,而不会显示数值在某时间段内的持续发展。...堆叠式条形图 跟多组条形图不同,堆叠式条形图 (Stacked Bar Graph) 将多个数据集的条形彼此重迭显示,适合用来显示大型类别如何细分为较小的类别,以及每部分与总量有什么关系。...不等宽柱状图 不等宽柱状图 (Marimekko Chart)也称为「马赛克图」,用来显示分类数据中一对变量之间的关系,原理类似双向的 100% 堆叠式条形图,但其中所有条形在数值/标尺轴上具有相等长度...散点图 散点图 (Scatterplot) 也称为「点图」、「散布图」或「X-Y 点图」,用来显示两个变量的数值(每个轴上显示一个变量),并检测两个变量之间的关系或相关性是否存在。

    9K10

    5个快速而简单的数据可视化方法和Python代码

    直方图的例子 Matplotlib中直方图的代码如下所示。有两个参数需要注意。首先,' n_boxes '参数控制我们需要多少个离散的箱子来制作我们的直方图。...有人可能会认为你需要制作两个单独的直方图,并将它们并排放在一起进行比较。但是,实际上有一种更好的方法:我们可以用不同的透明度覆盖直方图。看看下图。...我们将看到三种不同类型的条形图:常规条形图、分组条形图和堆叠条形图。在我们进行的过程中,请查看下图中的代码。 常规的条形图如下面的第一个图所示。...在' barplot() '函数中,' xdata '表示x轴上的标记,' ydata '表示y轴上的条高。误差条是以每个栏为中心的一条额外的线,用来显示标准差。 分组条形图允许我们比较多个分类变量。...然后我们循环遍历每一组,对于每一组,我们在x轴上画出每一个刻度的横杠,每一组也用颜色进行编码。 堆叠的条形图对于可视化不同变量的分类构成非常有用。在下面的堆叠条形图中,我们比较了每天的服务器负载。

    2.1K10

    60种常用可视化图表的使用场景——(上)

    3、弧线图 弧线图 (Arc Diagram) 是二维双轴图表以外另一种数据表达方式。在弧线图中,节点将沿着 X轴放置,然后再利用弧线表示节点与节点之间的连接关系。...条形图的离散数据是分类数据,针对的是单一类别中的数量多少,而不会显示数值在某时间段内的持续发展。...13、堆叠式条形图 跟多组条形图不同,堆叠式条形图 (Stacked Bar Graph) 将多个数据集的条形彼此重迭显示,适合用来显示大型类别如何细分为较小的类别,以及每部分与总量有什么关系。...14、不等宽柱状图 不等宽柱状图 (Marimekko Chart)也称为「马赛克图」,用来显示分类数据中一对变量之间的关系,原理类似双向的 100% 堆叠式条形图,但其中所有条形在数值/标尺轴上具有相等长度...分组式面积图在相同的零轴开始,而堆叠式面积图则从先前数据系列的最后数据点开始。

    26710

    《数据可视化基础》第四章:可视化图形推荐

    同时也可以把两个类别映射到X和Y轴上,这样就得到了热图来进行展示了。 ? 另外,对于多组别的数目的展示的话,如果是想要展示不同交集之间的数目可以使用venn图和upset图。 ?...脊线图 (峰峦图, Ridgeline plots) 可以替代小提琴图,并且在可视化随时间变化的分布时通常很有用。 ? 3 比例 我们使用饼图、并排的条形图以及堆叠的条形图来可视化比例。...堆叠的条形图对于每一部分的比较不是很容易区分,但是在比较多组比例的时候很有用。 ? 如果要进行多组比较的时候,这个时候饼图的空间往往就不够了。这个时候如果分组比较少的话,分组的条形图可以使用的。...对于成对的数据,沿x和y轴的变量以相同单位测量,通常添加一条表示x = y的线通常会有所帮助。 ? 对于大量的点,常规的散点图可能会由于点过多,就容易看不清趋势。...另一方面,当我们要可视化两个以上的变量时,我们可以选择以相关图而不是基础原始数据的形式绘制相关系数。 ? 当x轴表示时间或严格增加的变量(例如治疗剂量)时,我们通常绘制线图。

    2.4K30

    教程 | 5种快速易用的Python Matplotlib数据可视化方法

    以下是线图的实现代码,和散点图的代码结构很相似,只在变量设置上有少许变化。...) ax.set_title(title) 如果我们希望比较数据中两个变量的分布,有人可能会认为我们需要制作两个独立的直方图,并将它们拼接在一起而进行比较。...常规条形图如图 1 所示。在 barplot() 函数中,x_data 表示 x 轴上的不同类别,y_data 表示 y 轴上的条形高度。误差条形是额外添加在每个条形中心上的线,可用于表示标准差。...然后我们循环地遍历每一个组,并在 X 轴上绘制柱体和对应的值,每一个分组的不同类别将使用不同的颜色表示。 ? 分组条形图 堆叠条形图非常适合于可视化不同变量的分类构成。...在下面的堆叠条形图中,我们比较了工作日的服务器负载。通过使用不同颜色的方块堆叠在同一条形图上,我们可以轻松查看并了解哪台服务器每天的工作效率最高,和同一服务器在不同天数的负载大小。

    2.4K60

    5 种快速易用的 Python Matplotlib 数据可视化方法

    以下是线图的实现代码,和散点图的代码结构很相似,只在变量设置上有少许变化。...) ax.set_title(title) 如果我们希望比较数据中两个变量的分布,有人可能会认为我们需要制作两个独立的直方图,并将它们拼接在一起而进行比较。...常规条形图如图 1 所示。在 barplot() 函数中,x_data 表示 x 轴上的不同类别,y_data 表示 y 轴上的条形高度。误差条形是额外添加在每个条形中心上的线,可用于表示标准差。...然后我们循环地遍历每一个组,并在 X 轴上绘制柱体和对应的值,每一个分组的不同类别将使用不同的颜色表示。 分组条形图 堆叠条形图非常适合于可视化不同变量的分类构成。...在下面的堆叠条形图中,我们比较了工作日的服务器负载。通过使用不同颜色的方块堆叠在同一条形图上,我们可以轻松查看并了解哪台服务器每天的工作效率最高,和同一服务器在不同天数的负载大小。

    2K40

    科研绘图你值得注意的14个点 (2)

    在接下来的三个图表中,有两个是可以接受的,但有一个却犯了数据可视化的大忌。你能发现问题所在吗? 在点状图和线形图中,数据值是通过在x轴和y轴上的位置来表示的。...这种表示方法同样适用于其他基于位置的图表,比如箱形图。而在条形图中,数据值是通过条形与x轴的距离,也就是条形的长度来表示的。...但如果我们想用长度来展示数据,为什么不直接将环状图展开,制作成堆叠条形图呢?在堆叠条形图中,条形并排展示,这样跨组比较就变得容易多了。 11....的选择是直接展开圆环图,制作一个传统的堆叠条形图。顺便提一下,这也是我对 Circos 图和其他圆形图表布局的主要顾虑。 12....中间的堆叠条形图存在问题,主要是因为它试图同时完成两个不同的数据可视化任务。当误差条和点被叠加到堆叠条上时,就不清楚哪些误差条和点正在被比较。

    7810

    为什么你觉得Matplotlib用起来很困难?因为你还没看过这个思维导图

    使用箱子(离散化)真的帮助我们看到“更大的画面”,如果我们使用所有没有离散箱子的数据点,在可视化中可能会有很多噪音,使我们很难看到到底发生了什么。 ? 假设我们要比较数据中两个变量的分布。...有人可能会认为,你必须制作两个独立的直方图,把它们放在一起比较。但是,实际上有一个更好的方法:我们可以用不同的透明度覆盖直方图。看看下面的图。均匀分布的透明度设为0。5这样我们就能看到它的背后。...条形图 当您试图将类别很少(可能少于10个)的分类数据可视化时,条形图是最有效的。如果我们有太多的类别,那么图中的条形图就会非常混乱,很难理解。...它们非常适合分类数据,因为您可以根据条形图的大小;分类也很容易划分和颜色编码。我们将看到三种不同类型的条形图:常规的、分组的和堆叠的: ?...常规的条形图代码举例: bar(x_data, y_data, color = '#539caf', align = 'center') ?

    1.4K32

    Pandas数据可视化

    ,将所有的葡萄酒品牌按照产区分类,看看哪个产区的葡萄酒品种多:  先将plot需要的参数打包成一个字典,然后在使用**解包(防止传进去的成为一个参数) 上面的图表说明加利福尼亚生产的葡萄酒比其他省都多...如果分类比较多,必然每个分类的面积会比较小,这个时候很难比较两个类别 如果两个类别在饼图中彼此不相邻,很难进行比较  可以使用柱状图图来替换饼图 Pandas 双变量可视化 数据分析时,我们需要找到变量之间的相互关系...points',figsize=(14,8),fontsize = 16) 修改x轴 y轴标签字体   上图显示了价格和评分之间有一定的相关性:也就是说,价格较高的葡萄酒通常得分更高。...一:对数据进行采样 二:hexplot(蜂巢图) hexplot hexplot将数据点聚合为六边形,然后根据其内的值为这些六边形上色: 上图x轴坐标缺失,属于bug,可以通过调用matplotlib的...堆叠图(Stacked plots) 展示两个变量,除了使用散点图,也可以使用堆叠图 堆叠图是将一个变量绘制在另一个变量顶部的图表 接下来通过堆叠图来展示最常见的五种葡萄酒  从结果中看出,最受欢迎的葡萄酒是

    12610

    数据可视化设计指南

    占比图表包括: 1.堆叠的条形图 2.饼图 3.甜甜圈图 4.堆积的面积图 5.矩形树图 6.旭日图 相关性图表 相关性图表显示两个或多个变量之间的相关性。...面积图 面积图有几种类型,包括堆叠面积图和重叠面积图: 堆叠面积图显示了多个数据类别(在同一时间段内)彼此堆叠 重叠面积图显示了多个数据类别(在同一时间段内)彼此重叠 这两个图的区别在于堆叠面积图是各个类别数据叠加显示...ICON同时补充了色彩的含义。 X、Y轴数值标签 带数值标签的轴的作用是清晰地显示相应图示数据的范围和比例。例如,折线图X轴和Y轴显示一系列数值标签。 ? 条形图Y轴基准线起始值应始终从零开始。...考虑完全删除X、Y轴将视觉焦点集中在数据上。可以将数据直接放在其对应的图表元素上。 条形图Y轴基准线的起始值 条形图基准线起始值应从(y轴的起始值)为零开始。...从零开始的条形图 ? 禁止。 该基线起始于20%,容易引起误解。 X、Y轴上的数值文本 Y轴上的数值文本的使用应有助于在图表中反映最重要的数据洞察。

    6.1K31

    《七天数据可视化之旅》第五天:常用图表对比

    「柱状图」主要是比较数据的大小,「直方图」是用来展示数据的分布。 映射到X轴上的数据属性不同。 在柱状图中,X轴上的变量是分类数据,例如不同的手机品牌、店铺或网站在售商品的分类。...4)总结 相同点: 堆叠柱状图和百分比堆叠柱状图,都适合用来展示分类数据的构成对比或构成随时间的变化趋势。 当映射到X轴上的数据为时间序列时,此时可以用堆叠面积图or百分比堆叠面积图来代替。...4)总结 相同点: 堆叠面积图和百分比堆叠面积图,映射到X轴的均为【时间序列】。...4)总结 相同点: 散点图和气泡图,均是用来展示数据分布情况的一种图形。 散点图和气泡图,都是将两个字段映射到x,y轴的位置上,(x,y)的取值确定一个圆点或气泡在直角坐标系中的位置。...不同点: 散点图: 一般用来展示二维数据(x,y)的分布,侧重于研究二维数据的两个变量x,y之间的相关性,如身高和体重之间的相关关系。

    1.3K10

    使用MongoDB图表对数据进行可视化

    如果您想在MongoDB中进行可视化分析的数据,MongoDB图表是一个非常好的选择。 在使用MongoDB图表之前,实际上有三种方法可以可视化MongoDB数据。...在这个练习中,我想看看西雅图的哪些社区拥有最多的Airbnb房产,并按房产类型进行划分。我们将对类型使用堆叠条形图。 1、对于x轴,我们需要id字段,根据count进行聚合。 ?...动态图: https://webassets.mongodb.com/_com_assets/cms/x-axis-value-cz2tkvt97r.gif 将x轴值赋给MongoDB图表,沿着y轴我们会看到地址和郊区...动态图: https://webassets.mongodb.com/_com_assets/cms/y-axis-value-h1llqzam8w.gif 将y轴值赋给堆叠的条形图,让我们添加property_type...动态图: https://webassets.mongodb.com/_com_assets/cms/series-value-b1gprdumq6.gif 将一个序列值赋给一个堆叠的条形图,现在我们可以根据位置命名图表

    2.2K30

    60种常用可视化图表的使用场景——(下)

    此外,条形也可以如堆叠式条形图般堆叠起来。 推荐的制作工具有:jChartFX、Bokeh。...33、散点图 散点图 (Scatterplot) 也称为「点图」、「散布图」或「X-Y 点图」,用来显示两个变量的数值(每个轴上显示一个变量),并检测两个变量之间的关系或相关性是否存在。...每个烛台符号沿着 X 轴上的时间刻度绘制,显示随着时间推移的交易活动。 但是,蜡烛图只能显示开盘价和收盘价之间的关系,而非两者之间所发生的事件,因此也无法用来解释交易波动的缘由。...在绘制记数符号图表时,将类别、数值或间隔放置在同一个轴或列(通常为 Y 轴或左侧第一列)上。每当出现数值时,在相应的列或行中添加记数符号。...如果是按比例绘制的时间线,我们可以通过查看不同事件之间的时间间隔,了解事件发生的时间或即将在何时发生,从中查找时间段内的事件是否遵循任何模式,或者事件在该时间段内如何分布。

    16210

    原来使用 Pandas 绘制图表也这么惊艳

    轴上绘制索引,在 y 轴上绘制 DataFrame 中的其他数字列。...默认情况下显示图例的图例,但是我们可以将 legend 参数设置为 false 来隐藏图例。 条形图 条形图是一种基本的可视化图表,用于比较数据组之间的值并用矩形条表示分类数据。...: df_3Months.plot(kind='barh', figsize=(9,6)) Output: 我们还可以在堆叠的垂直或水平条形图上绘制数据,这些条形图代表不同的组,结果条的高度显示了组的组合结果...直方图 直方图是一种表示数值数据分布的条形图,其中 x 轴表示 bin 范围,而 y 轴表示某个区间内的数据频率。...='%.f', subplots=True, figsize=(14,8)) Output: 散点图 散点图在 x 和 y 轴上绘制数据点以显示两个变量之间的相关性。

    4.6K50

    Google数据可视化团队:数据可视化指南(中文版)

    显示随时间的变化 可以使用时间序列图表来表示随时间的变化,就是按时间顺序表示数据点的图表。表示随时间变化的图表包括:折线图,柱状图(条形图)和面积图。 ? *基线值是y轴上的起始值。...· 柱状图(条形图)使用共同的基线,通过条形长度表示数量 · 饼图使用圆的圆弧或角度表示整体的一部分 柱状图(条形图),折线图和堆叠面积图在显示随时间的变化方面比饼图更有效地。...面积图 面积图有多种类型,包括堆叠面积图和层叠面积图: · 堆叠面积图显示多个时间序列(在同一时间段内)堆叠在一起 · 层叠面积图显示多个时间序列(在同一时间段内)重叠在一起 层叠面积图建议不要使用超过两个时间序列...而旨在表达一般概念或趋势的数据可以使用细节较少的形状。 ? 2. 颜色 颜色可用于以四种主要方式区分图表数据: · 区分类别 · 表示数量 · 突出特定数据 · 表示含义 颜色区分类别 ?...坐标轴 一个或多个坐标轴显示数据的比例和范围。例如,折线图沿水平和垂直坐标轴显示一系列值。 ? 柱状图(条形图)基线 柱状图(条形图)应从为零的基线(y轴上的起始值)开始。

    5.2K31

    这些条形图的用法您都知道吗?

    (data = df, # 指定绘图数据 # 指定x轴和y轴的变量 mapping = aes(x = Province, y = GDP)) + # 绘制条形图...' # 填充色为铁蓝色 ) + # 删除x轴的标题 labs(x = '')# 绘制有序的条形图 p2 <- ggplot(data = df, # 要求x轴的省份按...然而,在实际的企业环境中,这样的图形出现的频次并不是很高,因为绝对数量的堆叠条形图并不能够达到刺激效果。读者不妨使用下面介绍的百分比堆叠条形图。...双离散单数值的百分比堆叠条形图 # 明细数据--双离散单数值变量的百分比堆叠条形图 ggplot(data = weather2017, mapping = aes(x = aqiInfo, fill...对于数值型变量有两个,离散型变量有一个的数据该如何绘制条形图呢(如常见的环比、同比问题),这里提供一个解决思路,那就是使用对比条形图。

    5.6K10

    数据导入与预处理-拓展-pandas可视化

    折线图 1.1 导入数据 1.2 绘制单列折线图 1.3 绘制多列折线图 1.4 绘制折线图-双y轴 2. 条形图 2.1 单行垂直/水平条形图 2.2 多行条形图 3....(loc=2) # 右侧坐标轴的图例位于右上角 plt.legend(loc=1) # 左侧坐标轴的图例位于左上角 ax.set_ylabel('B') # 设置左侧坐标轴的label plt.show...iloc[2].plot(kind = 'bar', figsize=(10, 6)) plt.show() 输出为: 2.2 多行条形图 多行堆叠 # 多行,堆叠对应着着stacked=True...散点图 4.1生成数据 # 散点图|常规 # 重新生成数据 df4 ,并制作散点图,X轴为 a,Y轴为 b df4 = pd.DataFrame(np.random.rand(50, 4), columns...() 输出为: 4.3 设置渐变色/边缘/边缘宽度 df4.plot.scatter(x="a", # x轴 y="b", # y轴

    3.1K20

    如何用指标分析维度精准定位可视化图表?

    柱形图 柱形图是分析师最常用到的图表之一,展示多个分类的数据变化和同类别各变量之间的比较情况。文本维度/时间维度通常作为X轴。数值型维度作为Y轴。柱形图至少需要一个数值型维度。 ?...分析维度:比较 适用:对比多维度数据 局限:数据不够直观 条形图 相当于柱形图的横置,两根轴对调了一下。条形图是用宽度相同的条形的长短来表示数据多少的图形。 ?...分析维度:比较 适用:类别名称过长,将有大量空白位置标示每个类别的名称 局限:分类过多则无法展示数据特点 相似图表: 堆叠条形图:比较同类别各变量和不同类别变量总和差异。 ?...双向条形图:用于对比同一个项目下两个不同数据的表现。 ? 折线图 折线图是排列在工作表的列或行中的数据可以绘制到折线图中。...分析维度:比较 适用:要同时展现两个项目数据的特点 局限:有柱状图和折线图两者的缺陷 相似图表: 双轴线柱图:有2个Y轴的线柱图 ? 双轴堆叠线柱图:有2个Y轴的堆叠线柱图 ?

    3.7K30
    领券