首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    一文教你在Colab上使用TPU训练模型

    TPU(张量处理单元)是针对处理矩阵而专门优化的专用集成电路(ASIC)。 ❝云TPU资源加速了线性代数计算的性能 ❞ Google Colab免费为TPUs提供实验支持!...在本文中,我们将讨论如何在Colab上使用TPU训练模型。具体来说,我们将通过在TPU上训练huggingface transformers库里的BERT来进行文本分类。...以下是我们根据云TPU文档中提到的TPU的一些用例: 以矩阵计算为主的模型 在训练中没有定制的TensorFlow操作 要训练数周或数月的模型 更大和非常大的模型,具有非常大的batch ❝如果你的模型使用自定义的.../www.tensorflow.org/guide/distributed 训练模型 在本节中,我们将实际了解如何在TPU上训练BERT。...结论 在本文中,我们了解了为什么以及如何调整一个模型的原始代码,使之与TPU兼容。我们还讨论了何时和何时不使用TPU进行训练。

    5.7K21

    教程 | 如何利用Google Colab免费训练StarCraft II

    选自Medium 作者:Franklin He 机器之心编译 参与:Nurhachu Null、路 本文介绍了如何在 Google Colab(Google 提供免费 GPU 的机器学习环境)上运行 StarCraft...为了向全球的 StarCraft II 研究者提供一个可复现、高效,且容易分享代码的环境,我想看看我们能否让 StrCraft II 在 Google Colab(Google 提供免费 GPU 的机器学习环境...快速搜索如何调试段错误使我想起了 Valgrind(http://valgrind.org/),令我惊讶的是,该工具竟然可以在 Google Colab 上使用。...通过在 Linux 上设置 LD_PRELOAD 环境变量,你可以加载 TCMalloc 共享库到程序中,强制让程序使用 TCMalloc。...我已经在 Google Colab 上提出了这个 bug(https://github.com/googlecolab/colabtools/issues/106),因此我们以后不必为此大费周折了。

    1.7K70

    Google Colab上的YOLOv3 PyTorch

    在本文中,将共享用于处理视频的代码,以获取Google Colab内部每一帧的每个对象的边界框 不会讨论 YOLO的概念或体系结构,这里我们只讨论功能代码 开始吧 Wahid Khene在Unsplash...尽管该回购已经包含了如何仅使用YOLOv3来运行视频,但是python detect.py --source file.mp4还是想通过删除一些不必要的行来分解并简化代码,并添加如何在Google Colab...对象Darknet是在PyTorch上初始化YOLOv3架构的,并且需要使用预先训练的权重来加载权重(目前不希望训练模型) 预测视频中的目标检测 接下来,将读取视频文件,并使用对象边界框重写视频。...OpenCV视频编写器的输出是Mp4视频,其大小是原始视频的3倍,并且无法以相同的方式显示在Google Colab上,解决方案之一是进行压缩(源) 使用以下方式将Mp4视频压缩为h264ffmpeg...在Google Colab上显示视频 https://stackoverflow.com/questions/57377185/how-play-mp4-video-in-google-colab 视频压缩

    2.6K10

    悄无声息,Google已禁止Colab上的Deepfake项目

    有消息显示,Google已于近日悄悄禁止了其在 Colaboratory(Colab)服务上的深度伪造(Deepfake)项目,这代表以Deepfake为目的大规模利用平台资源的时代或已画上句号。...正由于GPU的多核特性,Colab是类似Deepfake模型机器学习项目或执行数据分析理想选择。...经过一定训练,人们将Deepfake技术用于在视频片段中交换面孔,并添加真实的面部表情,几乎能够以假乱真。然而,这项技术时常被用于传播假新闻,制作复仇色情片,抑或用于娱乐目的。...正如DFL软件开发者“chervonij”在Discord社区平台上所指出的那样,那些现在仍尝试在 Colab平台上训练deepfake的用户会收到这样一条错误报告: “您可能正在执行不被允许的代码,这可能会限制你未来使用...分析人士预计,这一项新限制措施将在Deepfake世界中产生非常深远的影响,因为目前有许多用户都在运用Colab的预训练模型来启动他们的高分辨率项目。

    1.8K10

    StaleElementReferenceException 不再是问题:Google Colab 上的 Selenium 技巧

    今天,我们将在 Google Colab 环境中,结合代理 IP 技术,深入探讨如何有效解决这一问题,并以澎湃新闻的热点新闻页面为示例,进行实际操作。...以下是详细的实现代码,演示如何在 Google Colab 上使用 Selenium 和代理 IP 技术,并抓取澎湃新闻的热点新闻:from selenium import webdriverfrom...在函数内部,我们使用显式等待确保热点新闻元素加载完毕,并在捕获到 StaleElementReferenceException 异常时,等待一秒后重新尝试抓取数据。...结论通过在 Google Colab 上结合使用 Selenium 和代理 IP 技术,我们成功地解决了 StaleElementReferenceException 异常的问题。...这不仅提高了爬虫的稳定性,还增强了数据抓取的效率。希望这篇文章能够为你在处理动态页面抓取时提供实用的参考和帮助。

    16910

    【问题解决】解决如何在 CPU 上加载多 GPU 训练的模型

    前言 有一期的恶意文件检测模型训练好了,因此需要进行测试,关于恶意文件检测的内容,可以回看博主之前写的博文: 【AI】浅析恶意文件静态检测及部分问题解决思路 【AI】恶意文件静态检测模型检验及小结 因为样本在某台机子上...,又恰逢有其他模型在训练,因此 GPU 资源被占满了,不过测试这个模型的话,CPU 也绰绰有余了,当我准备使用 CPU 训练时,却遇到了问题; 分析 1、model.to(device) 不会影响 torch.load...上训练的模型,保存时会在参数名前多加了一个 module.....` state_dict_new[name] = v model.load_state_dict(state_dict_new) 这样就能够在 CPU 上加载多 GPU 训练的模型了...后记 以上就是 【问题解决】解决如何在 CPU 上加载多 GPU 训练的模型 的全部内容了,希望对大家有所帮助!

    60651

    【LLM训练系列01】Qlora如何加载、训练、合并大模型

    参数说明: model: 一个从 transformers 加载的预训练模型对象(如 GPT、BERT)。...非量化模型处理: 如果模型未被量化,所有的非 INT8 参数(比如 FP16 或 BF16)都会被强制转换为 FP32。这是为了确保数值稳定性,特别是在低精度下训练时。...这组配置是为了使用 BitsAndBytes 库实现 4 位量化,目的是在显存资源有限的情况下训练大型模型,同时尽量保持模型性能。具体设置包括: 启用 4 位量化 来压缩模型权重。...训练:需要prepare_model_for_kbit_training(model) 合并:加载基础模型进行合并qlora 推理:加载base模型然后加载qlora权重也可以加载合并之后的 模型为基础模型...训练:加载需要使用bnb对基础模型量化 合并:加载基础模型进行合并qlora 推理:加载base模型然后加载qlora权重也可以加载合并之后的

    21510

    为什么不提倡在训练集上检验模型?

    我们所期望得到的模型有以下几个特点:所建模型不会对样本数据中的噪声建模,同时模型应该有好的泛华能力,也就是在未观测数据上的效果依然不错。显然,我们只能够估计模型在训练数据以外的数据集上的泛化能力。...最好的描述性数据能够在观测数据集上非常准确,而最好的预测性模型则希望能够在为观测数据集上有着良好的表现。 过度拟合 在训练集上评估预测性模型的不足之处在于你无从得知该模型在未观测数据集上的表现如何。...根据模型在训练集上的准确度来判断模型的好坏往往会选出在未观测数据集上表现不佳的模型。其原因是模型的泛化能力不足。该模型的过度学习训练集上的数据特征,这叫做过度拟合,而过拟合往往是非常隐秘难以察觉的。...例如,我们可能会选择模型准确度不再上升作为停止训练的条件。在这种情况下,会存在一个分水岭,在此之后会呈现出模型在训练集上的准确性持续提高,但在未观测数据上的准确性下降。...在这一观点下,我们知道仅仅在训练集上评估模型是不够的,在未观测数据集上检验模型的泛化能力才是最好的方法。

    1.9K70

    Tensorflow加载预训练模型的特殊操作

    在前面的文章【Tensorflow加载预训练模型和保存模型】中介绍了如何保存训练好的模型,已经将预训练好的模型参数加载到当前网络。这些属于常规操作,即预训练的模型与当前网络结构的命名完全一致。...本文介绍一些不常规的操作: 如何只加载部分参数? 如何从两个模型中加载不同部分参数? 当预训练的模型的命名与当前定义的网络中的参数命名不一致时该怎么办?...如果从头训练显然没有finetune收敛速度快,但是模型又没法全部加载。此时,只需将未修改部分参数加载到当前网络即可。...如果需要从两个不同的预训练模型中加载不同部分参数,例如,网络中的前半部分用一个预训练模型参数,后半部分用另一个预训练模型中的参数,示例代码如下: import tensorflow as tf def...举个例子,例如,预训练的模型所有的参数有个前缀name_1,现在定义的网络结构中的参数以name_2作为前缀。

    2.3K271

    莆田版GPT-3开源:同等复现预训练模型GPT Neo,可在Colab上完成微调

    Eleuther AI推出的名为GPT-Neo的开源项目:公开发布的GPT-3同等复现预训练模型(1.3B & 2.7B),可在Colab上完成微调。 ……当然此 GPT-3非彼 GPT-3。...近日,Eleuther AI在GitHub上推出了一个名为GPT-Neo的开源项目:GPT-3同等复现预训练模型(1.3B & 2.7B),并可在Colab上完成微调。...项目目前在GitHub上已经得到了近3k的star。 ? Eleuther AI也表示,未来会进一步开源10B版本和原始大小版本的GPT3模型参数。...「莆田版」GPT-3 在Eleuther AI官网上,他们对GPT-Neo的描述是,「一系列基于变换器的语言模型的代码名称,这些模型的风格松散地围绕着GPT架构,我们计划对其进行训练和开源。...在1750亿个参数——模型从历史训练数据中学习的部分——它是同类模型中最大的模型之一,也是最复杂的模型之一,能够进行原始类比,以某种风格写作,甚至完成基本代码。

    1.1K20

    在NVIDIA DGX Station上利用TLT训练口罩识别模型

    的TLT迁移学习模型训练工具的过程,执行到“!...需要弄清楚的工作流程: 这次口罩识别数据集有1122张图像数据,在640图像尺寸执行120周期(epoch)训练,只花了8分钟左右的时间就完成,同样的训练时间在装有单片RTX2070/8G计算卡上,大约话费...Jupyter服务 l 在Jupyter界面执行数据集转换成KITTI结构与tfrecords格式 l 从NGC下载预训练模型 l 在tlt容器中执行模型训练与优化 l 将模型部署到Jetson...现在就开始在DGX工作中上执行口罩识别的模型训练任务。...在tlt容器中执行模型训练与优化 这部分是整个计算量最大的部分,也是考验设备性能的环节,比较繁琐的部分是每个阶段都使用不同的配置文件,里面都有需要修改的路径,下面简单列出每个环境的配置文件与需要修改的地方

    1.3K30

    在NVIDIA DGX Station上利用TLT训练口罩识别模型

    的TLT迁移学习模型训练工具的过程,执行到“!...需要弄清楚的工作流程: 这次口罩识别数据集有1122张图像数据,在640图像尺寸执行120周期(epoch)训练,只花了8分钟左右的时间就完成,同样的训练时间在装有单片RTX2070/8G计算卡上,大约话费...Jupyter服务 l  在Jupyter界面执行数据集转换成KITTI结构与tfrecords格式 l  从NGC下载预训练模型 l  在tlt容器中执行模型训练与优化 l  将模型部署到Jetson...现在就开始在DGX工作中上执行口罩识别的模型训练任务。...在tlt容器中执行模型训练与优化 这部分是整个计算量最大的部分,也是考验设备性能的环节,比较繁琐的部分是每个阶段都使用不同的配置文件,里面都有需要修改的路径,下面简单列出每个环境的配置文件与需要修改的地方

    78800

    BigTransfer (BiT):计算机视觉领域最前沿迁移学习模型

    BiT 是一组预训练的图像模型:即便每个类只有少量样本,经迁移后也能够在新数据集上实现出色的性能。...-50 在本教程中,我们将展示如何加载其中一种 BiT 模型,并: 以原生方式使用模型或 针对目标任务微调模型以提高准确率 具体来说,我们将演示如何使用在基于 ImageNet-21k 上训练的 ResNet50...在了解模型的详细使用方法之前,我们首先要了解如何训练此类模型,使其可有效迁移至多个任务。 上游训练 上游训练的精髓就体现在其名称,即我们可以在大数据集上有效地训练大型架构。...我们将使用最初加载的模型(即在 ImageNet-21k 上完成预训练的模型),以免过度偏向各类的一小部分子集。...您还学习了如何加载任意一种 BiT 模型,以及如何在目标任务中对其进行微调并保存生成的模型。希望本文能对您有所帮助,并预祝您顺利完成微调!

    3.5K10

    3.训练模型之在GPU上训练的环境安装

    一般来说我们会在笔记本或者 PC 端编写模型和训练代码,准备一些数据,配置训练之后会在笔记本或者 PC 端做一个简单验证,如果这些代码数据都 OK 的话,然后真正的训练放在计算力更强的的计算机上面执行,...虽然可以通过一些 hack 使 TensorFlow 的 Mac 版本继续支持 GPU,但是笔记本上的显卡计算能力还是比较弱,我也不想训练到一半把这块显卡烧了,所以我选择从云服务商那里租用一台 GPU...安装 TensorFlow GPU 版 为了在 GPU 上进行训练,还要安装 TensorFlow 的 GPU 版本(之前在笔记本上面安装的是 CPU版): sudo pip install tensorflow-gpu...当然还是需要在这台机器上面根据上一课时的内容完成 Object Detection API 的安装和配置;下载 Pre-trained 模型,然后把本地的训练目录打包上传,接着根据具体的路径修改 pipeline.config...一个训练的流程就跑完了,我们配置好了深度学习的软硬件环境,下节课我们开始准备数据,训练自己的模型吧。

    3.1K61

    新入坑的SageMaker Studio Lab和Colab、Kaggle相比,性能如何?

    本文我使用图像和 NLP 分类任务,比较了在 SageMaker Studio Lab 和 Colab、Colab Pro 以及 Kaggle 上训练神经网络的效果。...比较结果如下表所示: 在测试比较中我发现: SageMaker 只有持久存储,但与 Google Drive 不同的是,它的速度足以训练; Colab 暂存盘因实例而异; Colab 的持久存储是 Google...在单精度下,SageMaker 训练的结果再次翻转,总体上 SageMaker 比 Colab Pro 慢 72.2%。训练循环比 Colab Pro 慢 67.9%。...与 Colab P100 相比,在 Colab K80 上进行等效的 IMDB 训练时间要长 3 倍。如果可能的话,应避免使用 K80 对除小型模型以外的任何其他模型进行训练。...特别是对于一直在 K80 上使用免费 Colab 和训练模型的用户来说,SageMaker Studio Lab 将给你全面的升级体验。

    2.6K20

    Colab用例与Gemma快速上手指南:如何在Colab和Kaggle上有效地运用Gemma模型进行机器学习任务

    摘要 本文旨在向开发者介绍如何在Colab和Kaggle上有效地运用Gemma模型进行机器学习任务。内容涵盖Gemma的基础使用、LoRA微调技术及其对比分析,并提供分布式微调的详细步骤。...本文将通过具体的代码示例和操作命令,详细介绍如何在Colab和Kaggle平台上使用Gemma模型,包括基础推理、LoRA微调及分布式训练的实现。...正文 基础使用:Gemma快速上手 环境设置和模型加载 在Kaggle上开始之前,用户需要完成电话验证来启用GPU或TPU加速。验证成功后,可以在项目设置中选择所需的硬件加速选项。...分布式微调 分布式微调可以在多个处理器上并行处理数据,显著加快训练速度。Google Colab提供了对TPU的支持,极大地提升了训练效率。...小结 本文详细介绍了如何在Colab和Kaggle平台上使用和微调Gemma模型,包括基础使用、LoRA微调技术和分布式训练方法。通过具体的代码示例,帮助开发者快速掌握这些高级功能。

    14200
    领券