首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

Nat. Methods | scBasset:基于DNA序列的单细胞ATAC-seq卷积神经网络建模

本文介绍由美国生物科技公司Calico Life Sciences的Han Yuan 和 David R. Kelley共同通讯发表在 Nature methods 的研究成果:单细胞ATAC-seq(scATAC)在研究表观遗传景观中的细胞异质性方面具有巨大前景,但由于数据高维性和稀疏性的特点,scATAC的分析仍然面临重大挑战。为此,作者提出了一种基于DNA序列的卷积神经网络方法(scBasset)来对scATAC数据进行建模。实验表明,通过利用可及性峰值下的DNA序列信息和神经网络模型的表达能力,scBasset在scATAC和单细胞多组数据集的各种任务中展现了最先进的性能,包括细胞类型识别、scATAC去噪、数据集成和转录因子活性推断。

03

niftynet Demo分析 -- brain_parcellation

论文详细介绍 通过从脑部MR图像中分割155个神经结构来验证该网络学习3D表示的效率 目标:设计一个高分辨率和紧凑的网络架构来分割体积图像中的精细结构 特点:大多数存在的网络体系结构都遵循完全卷积下行-向上采样路径。具有高空间分辨率的低层次特征首先被下采样用于更高层次的特征抽象;然后对特征图进行上采样,以实现高分辨率分割。本论文提出了一种新的3D架构,它包含了整个层的高空间分辨率特征图,并且可以在广泛的接受领域中进行训练 验证:通过从T1加权MR图像中自动进行脑区分割成155个结构的任务来验证网络,验证了采用蒙特卡罗方法对实验中存在漏失的网络进行采样来对体素水平不确定度估计的可行性 结果:经过训练的网络实现了通用体积图像表示的第一步,为其他体积图像分割任务的迁移学习提供了一个初始模型

02

Cell Reports Methods|用于单细胞多组学数据综合分析的混合专家深度生成模型

本文介绍由日本名古屋大学医学研究生院系统生物学系的Teppei Shimamura通讯发表在Cell Reports Methods的研究成果:单细胞多组学分析的发展使得在单细胞水平上能够同时检测多个性状,从而对不同组织中的细胞表型和功能提供更深入的见解。目前,从复杂的多模态单细胞数据中推断联合表征和学习多模态之间的关系是具有挑战性的。为此作者提出了一种新的基于深度生成模型的框架(scMM),用于提取可解释的联合表征和跨模态生成。scMM利用混合专家多模态变分自动编码器来解决数据的复杂性。scMM的伪细胞生成策略弥补了深度学习模型可解释性的不足,并且通过实验发现了与潜在维度相关的多模态调节机制。对最新的数据集分析证实了scMM有助于实现具有丰富解释性的高分辨率聚类。此外,与最先进的方法和传统方法相比,scMM的跨模态生成可以实现更精确的预测和数据集成。

02

有证据了,MIT表明:大型语言模型≠随机鹦鹉,确实能学到语义

机器之心报道 编辑:小舟、张倩 大型语言模型能否捕捉到它们所处理和生成的文本中的语义信息?这一问题在计算机科学和自然语言处理领域一直存在争议。然而,MIT的一项新研究表明,仅基于文本形式训练、用于预测下一个token的语言模型确实能学习和表示文本的意义。 虽然大型预训练语言模型(LLM)在一系列下游任务中展现出飞速提升的性能,但它们是否真的理解其使用和生成的文本语义? 长期以来,AI社区对这一问题存在很大的分歧。有一种猜测是,纯粹基于语言的形式(例如训练语料库中token的条件分布)进行训练的语言模型不会

02

IEEE TNNLS|GAN的生成器反演

今天给大家介绍帝国理工学院的Antonia Creswell等人在IEEE Transactions on Neural Networks and Learning Systems上发表的文章” Inverting the Generator of a Generative Adversarial Network”。生成性抗网络(Generative Adversarial Network,GAN)能够生成新的数据样本。生成模型可以从选定的先验分布中提取的潜在样本来合成新的数据样本。经过训练,潜在空间会显示出有趣的特性,这些特性可能对下游任务(如分类或检索)有用。不幸的是,GAN没有提供“逆模型”,即从数据空间到潜在空间的映射,这使得很难推断给定数据样本的潜在表示。在这篇文章中,作者介绍了一种技术:反演(Inversion),使用反演技术,我们能够识别训练后的神经网络建模和量化神经网络性能的属性。

02
领券