首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

4.0Spark编程模型RDD

——《道德经》第二十二章 在面对自我的问题上,不自我表扬,反能显明;不自以为是,反能彰显;不自我夸耀,反能见功;不自我矜恃,反能长久。...的一个分区不可能对应一个子RDD的多个分区。...,不会产生同一父RDD的某一分区,落在子RDD的两个分区的情况)。...3.依赖关系说明 对两种依赖关系进行如下说明: 窄依赖的RDD可以通过相同的键进行联合分区,整个操作都可以在一个集群节点上进行,以流水线(pipeline)的方式计算所有父分区,不会造成网络之间的数据混合...执行时,调度程序会检查依赖性的类型,将窄依赖的RDD划到一组处理当中,即Stage。宽依赖在一个执行中会跨越连续的Stage,同时需要显式指定多个子RDD的分区。

64890
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    大数据技术之_19_Spark学习_07_Spark 性能调优小结

    然后将该 RDD 的每条数据都打上一个 n 以内的随机前缀。   同时对另外一个正常的 RDD 进行扩容,将每条数据都扩容成 n 条数据,扩容出来的每条数据都依次打上一个 0~n 的前缀。   ...最后将两个处理后的 RDD 进行 join 即可。   ...key 的情况,没法将部分 key 拆分出来进行单独处理,因此只能对整个 RDD 进行数据扩容,对内存资源要求很高。   ...调优建议:由于 SortShuffleManager 默认会对数据进行排序,因此如果你的业务逻辑中需要该排序机制的话,则使用默认的 SortShuffleManager 就可以;而如果你的业务逻辑不需要对数据进行排序...,那么建议参考后面的几个参数调优,通过 bypass 机制或优化的 HashShuffleManager 来避免排序操作,同时提供较好的磁盘读写性能。

    56231

    谷歌借AI打破十年排序算法封印,每天被执行数万亿次,网友却说是最不切实际的研究?

    人们曾投入大量时间探索如何更高效地完成排序任务。 作为一项基础操作,大多数编程语言的标准库中都内置有排序算法。...左:max (B, min (A, C)) 的原始实现用于对八个元素进行排序的更大排序算法。 ‍右:AlphaDev 发现在使用其复制移动时只需要 max (B, min (A, C))。...今年,AlphaDev 的新哈希算法被发布到开源 Abseil 库中,可供全球数百万开发人员使用,该库现在每天被数万亿次使用。 实际可用的代码 复杂程序中的排序机制能够处理大量任意条目的集合。...例如,某些单独算法只能对 3、4 或 5 个条目做排序。我们也可以同时使用一组函数对任意数量的条目作排序,但原则上每一次函数调用最多只能对 4 个条目做排序。...在 C++ 库的现有实现中,代码需要进行一系列测试来确认具体需要对多少个条目做排序,再根据条目数量调用相应的排序函数。

    23030

    Spark入门必读:核心概念介绍及常用RDD操作

    union (otherDataset):将两个RDD进行合并,返回结果为RDD中元素(不去重) intersection (otherDataset):对两个RDD进行取交集运算,返回结果为RDD无重复元素...,只接收一个可选参数任务数,所以不能在RDD分区本地进行聚合计算,如需按Key对Value聚合计算,只能对groupByKey返回的新RDD继续使用其他函数运算 reduceByKey (func, [...,第二个参数是分区内处理函数,第三个参数是分区间处理函数 sortByKey ([ascending], [numTasks]):对KV类型的RDD内部元素按照Key进行排序,排序过程会涉及Shuffle...join (otherDataset, [numTasks]):对KV类型的RDD进行关联,只能是两个RDD之间关联,超过两个RDD关联需要使用多次join函数,join函数只会关联出具有相同Key的元素...,相当于SQL语句中的inner join cogroup (otherDataset, [numTasks]):对KV类型的RDD进行关联,cogroup处理多个RDD关联比join更加优雅,它可以同时传入多个

    66860

    Spark入门必读:核心概念介绍及常用RDD操作

    union (otherDataset):将两个RDD进行合并,返回结果为RDD中元素(不去重) intersection (otherDataset):对两个RDD进行取交集运算,返回结果为RDD无重复元素...,只接收一个可选参数任务数,所以不能在RDD分区本地进行聚合计算,如需按Key对Value聚合计算,只能对groupByKey返回的新RDD继续使用其他函数运算 reduceByKey (func, [...,第二个参数是分区内处理函数,第三个参数是分区间处理函数 sortByKey ([ascending], [numTasks]):对KV类型的RDD内部元素按照Key进行排序,排序过程会涉及Shuffle...join (otherDataset, [numTasks]):对KV类型的RDD进行关联,只能是两个RDD之间关联,超过两个RDD关联需要使用多次join函数,join函数只会关联出具有相同Key的元素...,相当于SQL语句中的inner join cogroup (otherDataset, [numTasks]):对KV类型的RDD进行关联,cogroup处理多个RDD关联比join更加优雅,它可以同时传入多个

    1K30

    Apache Hudi重磅RFC解读之存量表高效迁移机制

    Apache Hudi分区可以和其他非Hudi分区共存,这种情况下会在Apache Hudi查询引擎侧做处理以便处理这种混合分区,这可以让用户使用Hudi来管理新的分区,同时保持老的分区不变。...方案 下图展示了每条记录的组织结构,为了方便理解,我们使用行格式进行展示,虽然实际使用的列存,另外假设下图中使用了BloomIndex。 ?...生成唯一的文件ID并以此为每个原始parquet文件生成Hudi骨架文件,同时会使用一个特殊的commit,称为BOOTSTRAP_COMMIT。...使用Hudi timeline状态变更进行原子性提交,也支持回滚操作。...Data Source支持 此部分说明如何集成Hudi引导表和Spark DataSource,Copy-On-Write表可以按照如下步骤使用Hudi数据源读取。

    97820

    如何构建更好的数据立方体系统(Cube)

    本文不是从实例的角度,来分析如何构建一个数据立方体,而是从BI的产品角度出发,如何构建起一个更好的数据立方体系统。 概念部分 本部分以概念介绍为主,了解的同学请跳过。...之所以这么叫是为了让用户更容易想象,方便解释和说明,同时也为了和传统的关系数据库中的二维表进行区分。...同时对维度列进行压缩编码,第一轮的结果,我们称为Base Cuboid,此后的每一轮MapReuce,输入是上一轮的输出,以重用之前的计算结果,去掉要聚合的维度,计算出新的Cuboid,以此向上,直到最后算出所有的...由于Key是由各维度值拼接在一起,从其中找出要聚合的维度,去掉它的值成新的Key,并对Value进行操作,然后把新Key和Value输出,进而Hadoop MapReduce对所有新Key进行排序、洗牌...使用DFS访问顺序,Mapper的输出已完全排序(除了一些特殊情况),因为Cuboid ID位于行键的开始位置,而内部Cuboid中的行已排序: 0000 0001[D0] 0001[D1] ....

    4.4K40

    自己工作中超全spark性能优化总结

    如果需要在repartition重分区之后还要进行排序,可直接使用repartitionAndSortWithinPartitions,比分解操作效率高,因为它可以一边shuffle一边排序 三、shuffle...由于SortShuffleManager默认会对数据进行排序,因此如果业务需求中需要排序的话,使用默认的SortShuffleManager就可以;但如果不需要排序,可以通过bypass机制或设置HashShuffleManager...避免排序,同时也能提供较好的磁盘读写性能。...spark的join过程中最核心的函数是cogroup方法,这个方法中会判断join的两个RDD所使用的partitioner是否一样,如果分区相同,即存在OneToOneDependency依赖,不用进行...所以针对Spark RDD的join操作的优化建议是: 如果需要join的其中一个RDD比较小,可以直接将其存入内存,使用broadcast hash join 在对两个RDD进行join操作之前,使其使用同一个

    1.9K20

    从头捋了一遍Spark性能优化经验,我不信你全会

    如果需要在repartition重分区之后还要进行排序,可直接使用repartitionAndSortWithinPartitions,比分解操作效率高,因为它可以一边shuffle一边排序 三、shuffle...由于SortShuffleManager默认会对数据进行排序,因此如果业务需求中需要排序的话,使用默认的SortShuffleManager就可以;但如果不需要排序,可以通过bypass机制或设置HashShuffleManager...避免排序,同时也能提供较好的磁盘读写性能。...spark的join过程中最核心的函数是cogroup方法,这个方法中会判断join的两个RDD所使用的partitioner是否一样,如果分区相同,即存在OneToOneDependency依赖,不用进行...所以针对Spark RDD的join操作的优化建议是: 如果需要join的其中一个RDD比较小,可以直接将其存入内存,使用broadcast hash join; 在对两个RDD进行join操作之前,使其使用同一个

    1.3K30

    Mapreduce

    采样倾斜key并分拆join操作 方案适用场景:两个RDD/Hive表进行join的时候,如果数据量都比较大,无法采用“解决方案五”,那么此时可以看一下两个RDD/Hive表中的key分布情况。...:如果在进行join操作时,RDD中有大量的key导致数据倾斜,那么进行分拆key也没什么意义,此时就只能使用最后一种方案来解决问题了。...然后将该RDD的每条数据都打上一个n以内的随机前缀。 同时对另外一个正常的RDD进行扩容,将每条数据都扩容成n条数据,扩容出来的每条数据都依次打上一个0~n的前缀。...最后将两个处理后的RDD进行join即可。...的情况,没法将部分key拆分出来进行单独处理,因此只能对整个RDD进行数据扩容,对内存资源要求很高。

    78270

    键值对操作

    键值对 RDD 提供了一些新的操作接口(比如统计每个产品的评论,将数据中键相同的分为一组,将两个不同的 RDD 进行分组合并等)。 1....如果有两个或者更多的分区都有对应同一个键的累加器,就需要使用用户提供的 mergeCombiners() 方法将各个分区的结果进行合并。...有时我们也可能想按完全不同的排序依据进行排序。要支持这种情况,我们可以提供自定义的比较函数。...如果两个 RDD 使用同样的分区方式,并且它们还缓存在同样的机器上(比如一个 RDD 是通过 mapValues() 从另一个 RDD 中创建出来的,这两个RDD 就会拥有相同的键和分区方式),或者其中一个...(3)影响分区方式的操作 Spark 内部知道各操作会如何影响分区方式,并将会对数据进行分区的操作的结果 RDD 自动设置为对应的分区器。

    3.5K30

    SparkR:数据科学家的新利器

    为了方便数据科学家使用Spark进行数据挖掘,社区持续往Spark中加入吸引数据科学家的各种特性,例如0.7.0版本中加入的python API (PySpark);1.3版本中加入的DataFrame...随后,来自工业界的Alteryx、Databricks、Intel等公司和来自学术界的普渡大学,以及其它开发者积极参与到开发中来,最终在2015年4月成功地合并进Spark代码库的主干分支,并在Spark...目前社区正在讨论是否开放RDD API的部分子集,以及如何在RDD API的基础上构建一个更符合R用户习惯的高层API。...RDD API 用户使用SparkR RDD API在R中创建RDD,并在RDD上执行各种操作。...总结 Spark将正式支持R API对熟悉R语言的数据科学家是一个福音,他们可以在R中无缝地使用RDD和Data Frame API,借助Spark内存计算、统一软件栈上支持多种计算模型的优势,高效地进行分布式数据计算和分析

    4.1K20

    RDD编程

    ,获得(UserID,UserInfo,LinkInfo) 未分区时对UserData和Events两个表进行连接操作: 实际上,由于userData这个RDD要比 events大很多,...采用分区以后对UserData和Events两个表进行连接操作: 由于已经对userData根据哈希值进行了分区,因此,在执行连接操作时,不需要再把userData 中的每个元素进行哈希求值以后再分发到其他节点上...groupByKey也是对每个key进行操作,但只生成一个sequence,groupByKey本身不能自定义函数,需要先用groupByKey生成RDD,然后才能对此RDD通过map进行自定义函数操作...但是,如果要根据21、29、17等数值进行排序,就无法直接使用sortByKey0来实现,这时可以使用sortBy()。...编程中如何进行文件数据读写和HBase数据读写。

    5600

    Spark性能优化指南——高级篇

    然后将该RDD的每条数据都打上一个n以内的随机前缀。 同时对另外一个正常的RDD进行扩容,将每条数据都扩容成n条数据,扩容出来的每条数据都依次打上一个0~n的前缀。...最后将两个处理后的RDD进行join即可。...的情况,没法将部分key拆分出来进行单独处理,因此只能对整个RDD进行数据扩容,对内存资源要求很高。...调优建议:由于SortShuffleManager默认会对数据进行排序,因此如果你的业务逻辑中需要该排序机制的话,则使用默认的SortShuffleManager就可以;而如果你的业务逻辑不需要对数据进行排序...,那么建议参考后面的几个参数调优,通过bypass机制或优化的HashShuffleManager来避免排序操作,同时提供较好的磁盘读写性能。

    81410
    领券