首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Transformers 4.37 中文文档(三十一)

编码器通过 from_pretrained()函数加载,解码器通过 from_pretrained()函数加载。交叉注意力层会自动添加到解码器,并应在下游生成任务(如摘要)上进行微调。...尽管前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是调用此函数,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。...虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是在此之后调用,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。...虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是在此之后调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。...尽管前向传播的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是这个函数,因为前者负责运行预处理和后处理步骤,而后者则会默默地忽略它们。

27210
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Transformers 4.37 中文文档(七十八)

    这个类方法只是调用 save_pretrained()和 save_pretrained()。更多信息请参考上述方法的文档字符串。...如果模型没有特定的最大输入长度(如 XLNet),则将停用截断/填充到最大长度。...此类方法只是调用 save_pretrained()和 save_pretrained()。有关更多信息,请参考上述方法的文档字符串。...尽管前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是在此之后调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。...虽然前向传递的步骤需要在此函数内定义,但应该在之后调用 Module 实例而不是这个函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

    19910

    用Python制作截图小工具

    之后,你可以使用save() 函数来保存图像,或者使用imwrite() 函数与NumPy 和OpenCV 模块一起把图像写到磁盘上。详细了解一下这两种方法。...1.用Pyautogui模块中的save() 函数一旦你安装了pyautogui 模块,最简单的截图方法是使用screenshot() 函数和save() 函数。下面是一个使用这些函数的示例代码。...然后,我们调用screenshot() 函数,该函数捕获了屏幕的图像。此外,在最后一行代码中,我们使用save() 函数和我们想保存的图像的名称。...最后,我们使用imwrite() 函数将图像写到磁盘上。这就是输出图像的样子。输出:图片以上是关于如何在Python中使用pyautogui 模块进行屏幕截图的全部内容。...我们看到了如何使用pyautogui 模块与save() 函数和其他模块,如NumPy 和OpenCV 。我们还学习了如何使用Python的Pillow 模块来捕捉屏幕的一部分。

    65121

    使用jprobe建设镜面层叠的原则和见解

    你就不得不正确它的寄存器使用规约做一番具体的了解才干还原被钩函数的參数,对于X86来讲,參数保存在栈中(也能够通过寄存器传參),要想还原被钩函数的參数现场,你要分析的就是regs->sp。...它的prefunc是这么实现的: prefunc(kprobe, regs) { 保存regs寄存器现场 保存栈的内容 //由于jprobe使用和被钩函数同样的栈,可能会改变栈的内容...因此返回正常流之后,栈上的參数信息没有变,仅仅是运行的函数变了。变成了entry。...–返回原始的运行流运行被钩函数 jprobe的entry钩子函数的參数和原始的被钩函数的參数全然一样。...register_jprobe failed:%d\n", ret); return -1; } k = &steal_jprobe.kp; f = func; // 依据stub函数的地址填充

    72720

    Transformers 4.37 中文文档(六十)

    如果模型没有特定的最大输入长度(如 XLNet),则将禁用截断/填充到最大长度。...如果模型没有特定的最大输入长度(如 XLNet),则截断/填充到最大长度将被停用。...接下来,我们提出了自监督在 NLP 中的泛化和统一视角,并展示了不同的预训练目标如何相互转换以及如何在不同目标之间插值可以是有效的。...使用提示 UL2 是一个编码器-解码器模型,预先在一系列去噪函数的混合上进行了预训练,并在一系列下游任务上进行了微调。...虽然前向传递的步骤需要在这个函数内定义,但应该在之后调用 Module 实例,而不是这个函数,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

    30210

    Transformers 4.37 中文文档(一)

    API描述了所有类和函数: 主要类详细介绍了配置、模型、分词器和管道等最重要的类。 模型详细介绍了库中实现的每个模型相关的类和函数。 内部助手详细介绍了内部使用的实用类和函数。...您可以通过对 Trainer 中的方法进行子类化来自定义训练循环行为。这样可以自定义特性,如损失函数、优化器和调度器。查看 Trainer 参考,了解哪些方法可以被子类化。...查看Hub 文档以获取最佳实践,如使用 GPG 进行签名提交验证。...这些方法将模型的原始输出转换为有意义的预测,如边界框或分割地图。 填充 在某些情况下,例如在微调 DETR 时,模型会在训练时应用尺度增强。这可能导致批处理中的图像大小不同。...如果您需要执行比填充样本更复杂的操作(例如,为了进行掩码语言建模而破坏标记),则可以使用collate_fn参数,而不是传递一个函数,该函数将被调用以将样本列表转换为批次并应用任何您想要的预处理。

    1.1K10

    Transformers 4.37 中文文档(九十四)

    编码器通过 from_pretrained()函数加载,解码器通过 from_pretrained()函数加载。交叉注意力层会自动添加到解码器,并应在下游生成任务(如摘要)上进行微调。...编码器通过 from_pretrained()函数加载,解码器通过 from_pretrained()函数加载。交叉注意力层会自动添加到解码器,并应在下游生成任务(如摘要)上进行微调。...如果模型没有特定的最大输入长度(如 XLNet),则将禁用截断/填充到最大长度。...虽然前向传递的步骤需要在这个函数内定义,但应该在此之后调用 Module 实例,而不是这个函数,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。...虽然前向传递的步骤需要在这个函数内定义,但应该在此之后调用 Module 实例,而不是这个函数,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

    25410

    Transformers 4.37 中文文档(十四)

    在文档中了解更多关于恢复运行的信息。 **neptune_run_kwargs (可选) — 传递给neptune.init_run()函数的其他关键字参数,当创建新运行时。...label_pad_token_id(int,可选,默认为-100)— 填充标签时要使用的 id(-100 将被 PyTorch 损失函数自动忽略)。...label_pad_token_id(int,可选,默认为-100)— 填充标签时要使用的 id(-100 将被 PyTorch 损失函数自动忽略)。...回调函数将定期保存并推送模型到 Hub。默认情况下,它每个 epoch 推送一次,但可以使用save_strategy参数进行更改。...save_function (Callable) — 用于保存状态字典的函数。在像 TPU 这样的分布式训练中很有用,当需要用另一种方法替换torch.save时。

    68410

    Transformers 4.37 中文文档(九十六)

    为了解决这一挑战,我们引入了一种能够解码任意视觉提示的新型多模态模型。这使用户可以直观地标记图像,并使用自然提示与模型进行交互,如“红色边界框”或“指向箭头”。...虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此之后调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。...(如 ViT, BEiT, DeiT)和任何预训练的文本自编码模型作为文本编码器(如 RoBERTa, BERT)初始化视觉文本双编码器模型。...虽然前向传递的步骤需要在此函数内定义,但应该在之后调用Module实例,而不是调用此函数,因为前者会负责运行前后处理步骤,而后者会默默忽略它们。...要将图像馈送到模型中,必须通过预训练的对象检测器传递每个图像,并提取区域和边界框。作者使用通过将这些区域通过预训练的 CNN(如 ResNet)传递后生成的特征作为视觉嵌入。

    44710

    从LLaMA-Factory项目认识微调

    基于chat模型进行领域SFT,会很容导致灾难性遗忘,在进行领域任务SFT之后,模型通用能力会降低,如只追求领域任务的效果,则不用考虑。...其他经验 在资源允许的情况下,如只考虑领域任务效果,我会选择模式二; 在资源允许的情况下,如考虑模型综合能力,我会选择模式五; 在资源不允许的情况下,我会考虑模式六; 一般情况下,我们不用进行RLHF微调...之后我们可以阅读这部分内容,来理解一下LoraConfig中每个参数的作用。...否则,它将使用原始的默认值 lora_alpha/r 。 至此,目前我们已经理解了项目中使用到的参数。 其他内容可根据官方文档理解。...注意:UI界面的使用请阅读官方文档,这里不会介绍UI如何使用。

    8K13

    使用QLoRA对Llama 2进行微调的详细笔记

    标记器将输入文本转换为标记,这些标记是NLP模型使用的基本文本单位。它还提供了额外的功能,如填充、截断和注意力掩码等。AutoTokenizer简化了为NLP任务对文本数据进行标记的过程。...我们使用AdamW和权重衰减是有意义的,因为权重衰减在微调期间特别有用,因为它有助于防止过拟合,并确保模型适应新任务,同时保留预训练中的一些知识。...packing:根据文档,ConstantLengthDataset使用这个参数来打包数据集的序列。...这减少了对大量填充的需求,并提高了内存使用和计算的效率。...在第17行,我们使用torch.cuda.get_device_capability()函数检查GPU与bfloat16的兼容性。该函数返回支持cuda的GPU设备的计算能力。

    6.1K31

    5分钟 NLP :Hugging Face 主要类和函数介绍 🤗

    ,所有的模型和关于模型的信息都在官方文档中提供了,例如下面代码使用的是twitter-roberta-base-sentiment classifier = pipeline("sentiment-analysis...所以可以使用与 load_dataset 函数相同的参数调用 load_metric 函数。 对于 SST2 数据集,指标是准确度。可以使用以下代码直接通过metric获得指标值。...,我们现在可以忽略它们)组成的字典, 和 attention_mask(显示在标记化期间发生填充的位置)。...这可以使用分词器和模型的 save_pretrained 函数来完成。 pt_save_directory = "....最后还演示了如何使用最重要的两个类 AutoModel 和 AutoTokenizer和如何在本地保存和加载模型,通过以上的介绍我想已经可以使用Hugging Face库开始你的NLP之旅了。

    51640

    5分钟 NLP :Hugging Face 主要类和函数介绍 🤗

    ,所有的模型和关于模型的信息都在官方文档中提供了,例如下面代码使用的是twitter-roberta-base-sentiment classifier = pipeline("sentiment-analysis...所以可以使用与 load_dataset 函数相同的参数调用 load_metric 函数。 对于 SST2 数据集,指标是准确度。可以使用以下代码直接通过metric获得指标值。...,我们现在可以忽略它们)组成的字典, 和 attention_mask(显示在标记化期间发生填充的位置)。...这可以使用分词器和模型的 save_pretrained 函数来完成。 pt_save_directory = "....最后还演示了如何使用最重要的两个类 AutoModel 和 AutoTokenizer和如何在本地保存和加载模型,通过以上的介绍我想已经可以使用Hugging Face库开始你的NLP之旅了。

    4.2K20

    你是怎么做的?

    Vue SSR将包含两部分:服务端渲染的首屏,包含交互的SPA 二、解决了什么 SSR主要解决了以下两种问题: seo:搜索引擎优先爬取页面HTML结构,使用ssr时,服务端已经生成了和业务想关联的HTML...降级:监控cpu、内存占用过多,就spa,返回单个的壳 服务器负载变大,相对于前后端分离务器只需要提供静态资源来说,服务器负载更大,所以要慎重使用 所以在我们选择是否使用SSR前,我们需要慎重问问自己这些问题...: 需要SEO的页面是否只是少数几个,这些是否可以使用预渲染(Prerender SPA Plugin)实现 首屏的请求响应逻辑是否复杂,数据返回是否大量且缓慢 三、如何实现 对于同构开发,我们依然使用...export default { asyncData({ store, route }) { // 约定预取逻辑编写在预取钩⼦asyncData中 // 触发 action 后...} }), ) .then(() => { // 所有预取钩

    4.1K21
    领券