首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python中最常用的 14 种数据可视化类型的概念与代码

本文总结介绍了多种可视化图及其适合使用场景,并同时展示使用了常用的绘图包(plotly、 seaborn 和 matplotlib )绘制这些图的代码。 条形图 条形图是用矩形条显示分类数据的图形。...以下是如何在情节中做到这一点: import plotly.express as px df = px.data.gapminder().query("country=='Canada'") fig =...它用于处理来自较大数据集的不同数据组。它的每个折线图都向下阴影到 x 轴。它让每一组彼此堆叠。...center r = ax1.patches[-1].r width=0.2 # 上边缘的连线 x = r*np.cos(np.pi/180*theta2)+center[0] y = np.sin(...中位数(小提琴图上的一个白点) 四分位数范围(小提琴中心的黑色条)。 较低/较高的相邻值(黑色条形图)--分别定义为第一四分位数-1.5 IQR和第三四分位数+1.5 IQR。

9.6K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    6个顶级Python可视化库

    如果你打算向他人展示你的数据,定制X轴、Y轴和其他绘图元素可能需要大量的努力。这是由于Matplotlib的低级接口造成的。...Plotly Plotly[4]图形库提供了一种毫不费力的方式来创建交互式和高质量的图形。它提供了一系列类似于Matplotlib和Seaborn的图表类型,包括线图、散点图、面积图、条形图等等。...优点 与R相似 如果你熟悉在R中创建绘图,并在使用Python时怀念它的功能,Plotly是一个很好的选择。它允许你用Python实现同样水平的高质量绘图。...可以生成一个交互式的图表,用户可以将鼠标悬停在每个条形图上,查看相应的用户和关注者数量。...优点 易于创建一个带有标记的地图 与Plotly、Altair和Bokeh等其他选项相比,Folium通过利用开放的街道地图提供了一种更直接的方法。这给人一种类似于谷歌地图的体验,而且代码最少。

    46420

    独家 | 别在Python中用Matplotlib和Seaborn作图了,亲,试试这个

    静态绘图的一些限制是,我们无法放大绘图中有趣的部分,也无法将鼠标悬停在绘图上以查看特定信息。 于是,plotly包闪亮登场了!...Plotly不仅具有 matplotlib及seaborn 所缺少的交互功能,还提供了更多种类的图表,例如: 统计类图表,如树状图、误差带、平行类别图等。 科学类图表,如等高线图、对数图等。...数据参数设置为一个列表,其中包含印度和中国的条形图函数 (go.Bar)。在 bar 函数中,我们将 x 轴设置为年份列,将 y 轴设置为人口列,将标记国家-颜色设置为印度-红色,中国-蓝色。 2....使用 update_layout 函数设置图表的标题、x 轴和 y 轴的文本。...世界发展随时间的变化:动画展示 利用气泡图,我们可以在 2D 图上展示 3 个维度(x 轴、y 轴和气泡大小)。

    1.8K20

    6个顶级Python可视化库

    如果你打算向他人展示你的数据,定制X轴、Y轴和其他绘图元素可能需要大量的努力。这是由于Matplotlib的低级接口造成的。...Plotly Plotly[4]图形库提供了一种毫不费力的方式来创建交互式和高质量的图形。它提供了一系列类似于Matplotlib和Seaborn的图表类型,包括线图、散点图、面积图、条形图等等。...推荐阅读(点击阅读):Pandas+Matplotlib+Plotly,完美解决 Python 数据分析问题 优点 与R相似 如果你熟悉在R中创建绘图,并在使用Python时怀念它的功能,Plotly是一个很好的选择...可以生成一个交互式的图表,用户可以将鼠标悬停在每个条形图上,查看相应的用户和关注者数量。...推荐阅读(点击阅读):Python地图绘制工具folium基础知识全攻略 优点 易于创建一个带有标记的地图 与Plotly、Altair和Bokeh等其他选项相比,Folium通过利用开放的街道地图提供了一种更直接的方法

    91520

    6个顶级Python可视化库!

    如果你打算向他人展示你的数据,定制X轴、Y轴和其他绘图元素可能需要大量的努力。这是由于Matplotlib的低级接口造成的。...Plotly Plotly[4]图形库提供了一种毫不费力的方式来创建交互式和高质量的图形。它提供了一系列类似于Matplotlib和Seaborn的图表类型,包括线图、散点图、面积图、条形图等等。...推荐阅读(点击阅读):Pandas+Matplotlib+Plotly,完美解决 Python 数据分析问题 优点 与R相似 如果你熟悉在R中创建绘图,并在使用Python时怀念它的功能,Plotly是一个很好的选择...可以生成一个交互式的图表,用户可以将鼠标悬停在每个条形图上,查看相应的用户和关注者数量。...推荐阅读(点击阅读):Python地图绘制工具folium基础知识全攻略 优点 易于创建一个带有标记的地图 与Plotly、Altair和Bokeh等其他选项相比,Folium通过利用开放的街道地图提供了一种更直接的方法

    1.1K11

    20个免费和开源数据可视化工具

    Charted Charted是一款免费的数据可视化工具,可让您从CSV文件和Google电子表格中创建折线图或条形图。...它专注于可视化,它带有基本功能,可以创建带有标签和注释的线条或堆叠图表。 3. Datawrapper Datawrapper是一款适合移动设备的数据可视化工具,可让您在几秒钟内创建图表和报告。...使用图表视图,您可以可视化数据维度之间的关系。数据显示为按行连接的节点。另一方面,列表视图允许您排列数据以生成自定义列表。该工具还具有库视图以显示网格中的数据。 10....您可以使用工具中提供的模板连接您的Google云端硬盘帐户,以使用Google电子表格创建时间轴。使用JSON,您可以创建自定义安装。 13....您还可以使用R或Python创建图表。 17. Polymaps Polymaps是一个免费的JavaScript库,用于在浏览器中创建动态的交互式地图。您可以使用该工具在地图上显示多缩放数据集。

    14.5K1214

    Python 绘制惊艳的瀑布图

    今天我们一起了解瀑布图的重要性,以及如何使用不同的绘图库(如 Matplotlib、Plotly)绘制瀑布图。 瀑布图 瀑布图经常用于财务分析,以了解多种因素对特定对象的正面和负面影响。...它们从水平轴开始,由一系列与负面或正面评论相关的浮动列连接。有时,条形图与图表中的线条相连。 瀑布图使用条件 让我们举个例子来了解何时何地使用瀑布图,因为制作瀑布图不是什么大问题。...该表按顺序显示了值的重要性,但读取这些值非常困难。相反,我们可以很容易地看到,按x轴正方向的连贯性顺序显示数据,并且黄色条显示减量,红色条显示增量。...x: x轴上的值 y: y轴上的值 text: 将要在图表上显示的值 textposition: 我们可以把文本放在图表的柱状图内或柱状图上方 为何更加优雅的使用图表,我们可以为图表的条形及其连接线设置颜色...rotation_value: 旋转并设置x轴的值。 写在最后 本文中,我们一起看到了瀑布图的重要性:何时以及如何将它与 Plotly 和 Matploib 一起使用。

    2.4K10

    如何在 Python 中使用 plotly 创建人口金字塔?

    人口金字塔是一个强大的可视化工具,可以帮助我们了解人口的人口构成并识别趋势和模式。 在本文中,我们将探讨如何在 Python 中使用 Plotly 创建人口金字塔。...x 参数指定要用于条形长度的变量,条形长度是每个年龄组中的人数。 y 参数指定要用于条形高度的变量,即年龄组。 方向参数指定条形应该是水平的。 颜色参数指定条形应按性别着色。...barmode 参数指定条形应相对于彼此堆叠。 range_x 参数指定 x 轴的范围,该范围确定金字塔的大小。 最后,我们使用 show() 方法打印绘图。...将为绘图创建一个布局,其中包含 x 轴和 y 轴的标题和标签。 使用 go 创建图形。图法与两条迹线和布局。 最后,使用 fig.show() 方法显示绘图。...输出 结论 在本文中,我们学习了如何在 Python 中使用 Plotly 创建人口金字塔。我们探索了两种不同的方法来实现这一目标,一种使用熊猫数据透视表,另一种使用 Plotly 图形对象。

    41610

    可视化图表样式使用大全

    弧线图 (Arc Diagram) 是二维双轴图表以外另一种数据表达方式。在弧线图中,节点将沿着 X轴放置,然后再利用弧线表示节点与节点之间的连接关系。 弧线图适合用来查找数据共同出现的情况。...此外,雷达图也可用于查看数据集中哪些变量得分较高/低,是显示性能表现的理想之选。 每个变量都具有自己的轴(从中心开始)。所有的轴都以径向排列,彼此之间的距离相等,所有轴都有相同的刻度。...误差线总是平行于定量标尺的轴线,可以是垂直或水平显示(取决于定量标尺是在 Y 轴还是 X 轴上)。 推荐的工具有:AnyChart、Highcharts、plotly、Vega。 树形结构图 ?...推荐的制作工具有:Arpit Narechania's Block。 径向条形图 ? 径向条形图是在极坐标系上绘制的条形图。 虽然看起来很美观,但径向条形图上条形的长度可能会被人误解。...此外,条形也可以如堆叠式条形图般堆叠起来。 推荐的制作工具有:jChartFX、Bokeh。 热图 ?

    9.4K10

    常用60类图表使用场景、制作工具推荐!

    弧线图 弧线图 (Arc Diagram) 是二维双轴图表以外另一种数据表达方式。在弧线图中,节点将沿着 X轴放置,然后再利用弧线表示节点与节点之间的连接关系。...此外,雷达图也可用于查看数据集中哪些变量得分较高/低,是显示性能表现的理想之选。 每个变量都具有自己的轴(从中心开始)。所有的轴都以径向排列,彼此之间的距离相等,所有轴都有相同的刻度。...误差线总是平行于定量标尺的轴线,可以是垂直或水平显示(取决于定量标尺是在 Y 轴还是 X 轴上)。 推荐的工具有:AnyChart、Highcharts、plotly、Vega。...推荐的制作工具有:Arpit Narechania's Block。 径向条形图 径向条形图是在极坐标系上绘制的条形图。 虽然看起来很美观,但径向条形图上条形的长度可能会被人误解。...此外,条形也可以如堆叠式条形图般堆叠起来。 推荐的制作工具有:jChartFX、Bokeh。

    8.9K20

    60 种常用可视化图表,该怎么用?

    弧线图 弧线图 (Arc Diagram) 是二维双轴图表以外另一种数据表达方式。在弧线图中,节点将沿着 X轴放置,然后再利用弧线表示节点与节点之间的连接关系。...此外,雷达图也可用于查看数据集中哪些变量得分较高/低,是显示性能表现的理想之选。 每个变量都具有自己的轴(从中心开始)。所有的轴都以径向排列,彼此之间的距离相等,所有轴都有相同的刻度。...误差线总是平行于定量标尺的轴线,可以是垂直或水平显示(取决于定量标尺是在 Y 轴还是 X 轴上)。 推荐的工具有:AnyChart、Highcharts、plotly、Vega。...推荐的制作工具有:Arpit Narechania's Block。 径向条形图 径向条形图是在极坐标系上绘制的条形图。 虽然看起来很美观,但径向条形图上条形的长度可能会被人误解。...此外,条形也可以如堆叠式条形图般堆叠起来。 推荐的制作工具有:jChartFX、Bokeh。

    9K10

    利用Python的Plotly库创建交互式数据可视化

    我们将使用Plotly的scatter函数来绘制散点图,并添加一些交互功能,如悬停提示和缩放。...当鼠标悬停在点上时,将显示该点的具体坐标值。添加更多交互功能除了基本的交互功能外,Plotly还支持许多其他交互功能,如缩放、拖动、选择和旋转等。...constrain='domain'参数限制了x轴的缩放范围,而scaleanchor="x"参数将y轴的缩放锚定在x轴上,使得在缩放时x轴和y轴的比例保持不变。...下面我们来展示如何使用Plotly创建一个简单的交互式条形图,并添加一些交互功能。...添加交互式功能,如悬停提示、缩放、拖动和点击,以提升图形的交互性和可视化效果。Plotly库提供了丰富的功能和灵活的接口,使得用户能够轻松创建各种类型的交互式图形,并探索数据的不同方面。

    94530

    用Python的Plotly画出炫酷的数据可视化(含各类图介绍)

    这样的图看上去还是比较素,我们可以使用参数来自定义条形图的样式: import plotly.express as px data = px.data.gapminder() data_canada...调整样式后会明显发现数据展示会友好很多,能够清楚的看到数据的增长程度。 除了柱状图之外还有其他的散点图,折线图,饼状图,条形图,箱型图等等(也包含一些热图,登高图,地图分布等等)。 ?...散点图 散点图核心的价值在于发现变量之间的关系,千万不要简单地将这个关系理解为线性回归关系。变量间的关系有很多,如线性关系、指数关系、对数关系等等,当然,没有关系也是一种重要的关系。...三元图 三元图,又称三元相图(Ternary plot)有三个坐标轴,它的三个坐标轴“首尾相接”成夹角为60度的等边三角形。...极坐标图 极坐标图主要作用就是可在一张图上绘出整个频率域的频率响应特性。

    3.2K51

    推荐:这才是你寻寻觅觅想要的 Python 可视化神器

    它带有数据集、颜色面板和主题,就像 Plotly.py 一样。...也可以通过 facet_col ="continent" 来轻松划分各大洲,就像着色点一样容易,并且让我们使用 x轴 对数(log_x)以便在我们在图表中看的更清晰: ?...事实上,Plotly Express 支持三维散点图、三维线形图、极坐标和地图上三元坐标以及二维坐标。条形图(Bar)有二维笛卡尔和极坐标风格。...Plotly Express 甚至可以帮助你在悬停框中添加线条公式和R²值! 它使用 statsmodels 进行普通最小二乘(OLS)回归或局部加权散点图平滑(LOWESS)。 ?...每个 Plotly Express 函数都体现了dataframe 中行与单个或分组标记的清晰映射,并具有图形启发的语法签名,可让你直接映射这些标记的变量,如 x 或 y 位置、颜色、大小、 facet-column

    5K10

    强烈推荐一款Python可视化神器!

    它带有数据集、颜色面板和主题,就像 Plotly.py 一样。 Plotly Express 完全免费:凭借其宽松的开源 MIT 许可证,您可以随意使用它(是的,甚至在商业产品中!)。...也可以通过 facet_col =”continent“ 来轻松划分各大洲,就像着色点一样容易,并且让我们使用 x轴 对数(log_x)以便在我们在图表中看的更清晰: ?...事实上,Plotly Express 支持三维散点图、三维线形图、极坐标和地图上三元坐标以及二维坐标。 条形图(Bar)有二维笛卡尔和极坐标风格。...Plotly Express 甚至可以帮助你在悬停框中添加线条公式和R²值! 它使用 statsmodels 进行普通最小二乘(OLS)回归或局部加权散点图平滑(LOWESS)。 ?...每个 Plotly Express 函数都体现了dataframe 中行与单个或分组标记的清晰映射,并具有图形启发的语法签名,可让您直接映射这些标记的变量,如 x 或 y 位置、颜色、大小、 facet-column

    4.4K30

    这才是你寻寻觅觅想要的 Python 可视化神器

    它带有数据集、颜色面板和主题,就像 Plotly.py 一样。 Plotly Express 完全免费:凭借其宽松的开源 MIT 许可证,您可以随意使用它(是的,甚至在商业产品中!)。...也可以通过 facet_col =”continent“ 来轻松划分各大洲,就像着色点一样容易,并且让我们使用 x轴 对数(log_x)以便在我们在图表中看的更清晰: ?...事实上,Plotly Express 支持三维散点图、三维线形图、极坐标和地图上三元坐标以及二维坐标。 条形图(Bar)有二维笛卡尔和极坐标风格。...主题(Themes)允许您控制图形范围的设置,如边距、字体、背景颜色、刻度定位等。...每个 Plotly Express 函数都体现了dataframe 中行与单个或分组标记的清晰映射,并具有图形启发的语法签名,可让您直接映射这些标记的变量,如 x 或 y 位置、颜色、大小、 facet-column

    3.7K20

    这才是你寻寻觅觅想要的 Python 可视化神器!

    它带有数据集、颜色面板和主题,就像 Plotly.py 一样。 Plotly Express 完全免费:凭借其宽松的开源 MIT 许可证,您可以随意使用它(是的,甚至在商业产品中!)。...也可以通过 facet_col =”continent“ 来轻松划分各大洲,就像着色点一样容易,并且让我们使用 x轴 对数(log_x)以便在我们在图表中看的更清晰: ?...事实上,Plotly Express 支持三维散点图、三维线形图、极坐标和地图上三元坐标以及二维坐标。 条形图(Bar)有二维笛卡尔和极坐标风格。...Plotly Express 甚至可以帮助你在悬停框中添加线条公式和R²值! 它使用 statsmodels 进行普通最小二乘(OLS)回归或局部加权散点图平滑(LOWESS)。 ?...每个 Plotly Express 函数都体现了dataframe 中行与单个或分组标记的清晰映射,并具有图形启发的语法签名,可让您直接映射这些标记的变量,如 x 或 y 位置、颜色、大小、 facet-column

    4.2K21
    领券