列如:100、200、0、-250 浮点数常量:直接写上的数字 ,有小数点。列如:2.5、-3.14 字符常量:凡是用单引号引起来的单个字符,叫做字符常量。**注意:只能写一个,且不能不写。...列如“+” 表达式:用运算符连起来的式子叫做表达式。列如:20+5. 、a+b 算术运算符 / 【 】 取mode:% 只有对于整数的除法来说,取模运算符才有余数的意义。...多个条件可以连写 三元运算符 一元运算符 例如:取反!、自增++ 二元运算符 例如:加法+、赋值=、 三元运算符 数据类型 变量名称 = 条件判断?...,而且只做唯一一次 条件判断:如果成立,则循坏继续,不成立循坏退出 循坏体:重复做的事情内容,若干行语句 步进语句:每次循坏之后要进行的扫尾工作,每次循坏结束都要这样 for循坏 while...数组是引用数据类型 数组当中的多个数据,类型必须统一 数组的长度在程序运行期间不可改变 動態初始化 數據類型[] 數組名稱 = new 數據類型 数组的初始化 在内存当中创建一个数组,并且向其中赋予一个默认值
输入: 答案: 22.如何使用科学记数法(如1e10)漂亮地打印一个numpy数组?...难度:1 问题:使用科学记数法(如1e10)漂亮的打印数组rand_arr 输入: 输出: 答案: 23.如何限制numpy数组输出中打印元素的数量?...难度:1 问题:将python numpy数组a中打印的元素数量限制为最多6个。 输入: 输出: 答案: 24.如何在不截断的情况下打印完整的numpy数组?...答案: 34.如何根据两个或多个条件过滤一个numpy数组? 难度:3 问题:过滤具有petallength(第3列)> 1.5和sepallength(第1列)<5.0的iris_2d的行。...难度:2 问题:找出数组iris_2d是否有缺失的值。 答案: 38.如何在numpy数组中使用0替换所有缺失值? 难度:2 问题:在numpy数组中用0替换nan。
兼容性:Pandas与其他数据科学库(如NumPy和scikit-learn)无缝集成,可以在数据分析和机器学习项目中有效地使用向量化数据。...让我们以Python和NumPy为例,探索向量化如何加快代码的速度。 传统的基于循环的处理 在许多编程场景中,可能需要对数据元素集合执行相同的操作,例如逐个添加两个数组或对数组的每个元素应用数学函数。...向量化加速代码的原理 向量化为加快代码速度提供了几个优势: 减少循环开销:在传统循环中,存在与管理循环索引和检查循环条件相关的开销。通过向量化,可以消除这些开销,因为这些操作应用于整个数组。...优化的低级指令:像NumPy这样的库使用优化的低级指令(例如,现代cpu上的SIMD指令)来对数组执行操作,充分利用硬件功能。这可以显著提高速度。...并行性:一些向量化操作可以并行化,这意味着现代处理器可以同时执行多个操作。这种并行性进一步加快了计算速度。
它提供了多维数组对象以及各种派生对象(如掩码数组和矩阵),并包含大量用于快速数组操作的数学函数库。 基础知识 数组创建 NumPy的主要数据结构是ndarray,即同质的多维数组。...数组属性 ndarray具有多个重要属性,可以描述其特性: ndim:数组的维数,也称为rank。 shape:数组的形状,一个元组表示每个维度的大小。 size:数组中元素的总数。...处理NaN值的函数:如nanmax()、nanmin()等,用于处理包含NaN值的数组操作。 如何在NumPy中实现矩阵分解算法?...此外,定期更新库版本以利用最新的性能改进和功能。 在机器学习项目中,NumPy如何优化模型训练过程?...这些功能使得NumPy成为处理大量矩阵计算和向量操作的理想选择,从而加速模型参数的更新和优化。
虽然是入门课程,但也有一定门槛:课程参与者要具备 Numpy 基础知识。 该教程共分为五节: PyTorch 简介 Autograde:自动微分 神经网络 训练一个分类器 数据并行 ?...第 1 节“PyTorch 简介”介绍了 PyTorch 的基本技术细节,如 Tensor、基本操作句法,还包括 Torch Tensor 与 Numpy 数组之间的转换、CUDA Tensor 等基础知识...第 3 节介绍了训练一个神经网络的常见步骤,包括定义具有一些可学习参数的神经网络、遍历输入数据集、通过神经网络处理输入、计算损失、将梯度传播回网络参数、更新网络权重等。 ?...在学会定义网络、计算损失、更新权重之后,第 4 节开始讲解如何训练一个分类器。...此外,这一节还讲解了如何在 GPU 上训练神经网络。 如果想进一步加速训练过程,还可以选修第 5 节——数据并行,学习如何在多个 GPU 上训练网络。
我的天,“可微分的numpy”实在是太棒了!我对pytorch有一点不是很满意,他们基本上重新做了numpy所做的一切,但存在一些愚蠢的差异,比如“dim”,而不是“axis”,等等。...JAX跟踪缓存为跟踪计算的参数创建了一个monomorphic signature,以便新遇到的数组元素类型、数组维度或元组成员触发重新编译。...现有的原语不仅包括数组级别的数字内核,包括Numpy函数和其他函数,它们允许用户通过保留PSC属性将控制流分段到编译后的计算中。...最后,JAX包含一些用于功能分布式编程的原语,如iterated_map_reduce。 为了生成代码,JAX将跟踪转换为XLA HLO,这是一种中间语言,可以对高度可加速的数组级数值程序进行建模。...谷歌编写了一个单独的随机梯度下降(SGD)更新步骤,并从一个纯Python循环中调用它,结果如表2所示。 作为参考,谷歌在TensorFlow中实现了相同的算法,并在类似的Python循环中调用它。
如果循环迭代次数只有几次,那么可以完全展开循环,以便消除循坏带来的负担。...例如,如果我们在从数组中查找一个特殊的值,一经找到,我们应该尽可能早的断开循环。例如:如下循环从10000个整数中查找是否存在-99。...在第一种形式种,由于编译器无从知道f函数是否具有副作用,所以它必须两次计算数组a的下标表达式的值。而在第二种形式中,下标表达式只需计算一次,所以第二种形式效率更高。...尽量使循环体内的工作量达到最小化 循环中,随着循环次数的增加,会加大对系统资源的消耗。我们应当确认一些操作是否必须放在循环体内。...同时,我们还可以考虑类似这样的代码是否有必要封装成一个函数供多个地方调用。 以上就是本次的分享,如有错误,欢迎指出!
Q-99:什么是 NumPy,它比 Python 中的列表好在哪里? Q-100:在 Python 中创建空的 NumPy 数组有哪些不同的方法?...NumPy 是一个用于科学计算的 Python 包,可以处理大数据量。它包括一个强大的 N 维数组对象和一组高级函数。 此外,NumPy 数组优于内置列表。 NumPy 数组比列表更紧凑。...使用 NumPy 读取和写入项目更快。 使用 NumPy 比使用标准列表更方便。 NumPy 数组更高效,因为它们增强了 Python 中列表的功能。...回到目录 ---- Q-100:在 Python 中创建空的 NumPy 数组有哪些不同的方法? 我们可以应用两种方法来创建空的 NumPy 数组。 创建空数组的第一种方法。...import numpy numpy.array([]) 第二种方法创建一个空数组。
比如用于WEB开发的Django/Flask,用于科学计算的 Numpy/Scipy,用于机器学习的 Scikit-Learn,用于运维的 Supervisor/Fabric,用于网络爬虫的 BeautifulSoup...比如你自己构造一个列表,实现列表中数据的访问、更新、删除等基本操作,比如 len()、max()、min() 函数,以及 append()、count()、extend() 等方法。...如何实现判断和循坏,如何将固定的功能模块封装成函数,这些不仅是写出代码的必要条件,也是训练编程思维的必经之路。...流程控制则相对要好掌握一些,条件语句和循坏语句在不同的场景下练习几遍,知道判断和循环实现的过程,基本上就没问题了。...深入 Python 编程 其实第三个阶段反复练习实践,你已经基本具备一些工作的技能了,比如 Python 数据分析、网络爬虫、写工具脚本…… 首先你要了解Python的高级特性,如迭代器、生成器、装饰器等
在这篇博客中,将学习如何在 PyTorch 中实现逻辑回归。 1. 数据集加载 在这里,我将使用来自 sklearn 库的乳腺癌数据集。这是一个简单的二元类分类数据集。...让我们看看如何在 PyTorch 中编写用于逻辑回归的自定义模型。第一步是用模型名称定义一个类。这个类应该派生torch.nn.Module。...还有其他优化器,如 Adam、lars 等。 优化算法有一个称为学习率的参数。这基本上决定了算法接近局部最小值的速率,此时损失最小。这个值很关键。...然后通过调用optimizer.step()更新权重。之后,必须为下一次迭代清空权重。因此调用 zero_grad()方法。...所以,我在这个循环中写的任何内容都不会导致权重发生变化,因此不会干扰反向传播过程。
原子操作类的作用 当程序更新一个变量时,如果多个线程同时更新该变量,可能会得到期望以外的值。...原子操作类基本分类 原子更新基本类型(3个) AtomicBoolean 原子更新布尔类型 AtomicInteger 原子更新整型 AtomicLong 原子更新长整型 原子更新数组(3个) AtomicIntegerArray...原子更新整形数组中的元素 AtomicLongArray 原子更新长整型数组中的元素 AtomicReferenceArray 原子更新引用类型数组中的元素 原子更新引用类型(3个) AtomicReference...解决ABA问题,可以在变量前加一个版本号,变量更新时,版本号就加1. 循环时间长,开销大: CAS采用的是自循的方式进行检查,如果长时间不成功,那么就会给CPU带来非常大的开销。...如Boolean型的,先转成整整,然后在使用compareAndSwapInt进行操作;所以像char/float/double/short…等都可以按照这种思路实现。
Python 的一些主要软件包(如 scikit-learn、SciPy、pandas 和 tensorflow)都以 NumPy 作为其架构的基础部分。...当我开始学习这些工具时,我发现这样的抽象让我不必在循环中编写类似计算。此类抽象可以使我在更高层面上思考问题。 除了「加」,我们还可以进行如下操作: ?...我们也可以对不同大小的两个矩阵执行此类算术运算,但前提是某一个维度为 1(如矩阵只有一列或一行),在这种情况下,NumPy 使用广播规则执行算术运算: 点乘 算术运算和矩阵运算的一个关键区别是矩阵乘法使用点乘...如果想要提取音频的第一秒,只需将文件加载到 audio 的 NumPy 数组中,然后获取 audio[:44100]。 以下是一段音频文件: ? 时间序列数据也是如此(如股票价格随时间变化)。...出于性能原因,深度学习模型倾向于保留批大小的第一维(因为如果并行训练多个示例,模型训练速度会加快)。在这种情况下,reshape() 变得非常有用。
Python 的一些主要软件包(如 scikit-learn、SciPy、pandas 和 tensorflow)都以 NumPy 作为其架构的基础部分。...当我开始学习这些工具时,我发现这样的抽象让我不必在循环中编写类似计算。此类抽象可以使我在更高层面上思考问题。 除了「加」,我们还可以进行如下操作: ?...我们也可以对不同大小的两个矩阵执行此类算术运算,但前提是某一个维度为 1(如矩阵只有一列或一行),在这种情况下,NumPy 使用广播规则执行算术运算: ? 3....如果想要提取音频的第一秒,只需将文件加载到 audio 的 NumPy 数组中,然后获取 audio[:44100]。 以下是一段音频文件: ? 时间序列数据也是如此(如股票价格随时间变化)。...出于性能原因,深度学习模型倾向于保留批大小的第一维(因为如果并行训练多个示例,模型训练速度会加快)。在这种情况下,reshape() 变得非常有用。
如何在 Python NumPy 数组中仅输出小数点后三位的数字? 难度:L1 问题:输出或显示 NumPy 数组 rand_arr 中小数点后三位的数字。...如何通过禁用科学计数法(如 1e10)打印 NumPy 数组? 难度:L1 问题:通过禁用科学计数法(如 1e10)打印 NumPy 数组 rand_arr。...如何在不截断数组的前提下打印出完整的 NumPy 数组? 难度:L1 问题:在不截断数组的前提下打印出完整的 NumPy 数组 a。...如何在 NumPy 数组中将所有缺失值替换成 0? 难度:L2 问题:在 NumPy 数组中将所有 nan 替换成 0。...如何在 2 维 NumPy 数组中找到每一行的最大值? 难度:L2 问题:在给定数组中找到每一行的最大值。
numpy中支持5类创建数组的方式: 从普通数据结构创建,如列表、元组等 从特定的array结构创建,支持大量方法,例如ones、zeros、empty等等 empty接收指定大小创建空数组,这里空数组的意义在于未进行数值初始赋值...05 数组拼接 ? 数组拼接也是常用操作之一,主要有3类接口: concatenate,对给定的多个数组按某一轴进行拼接,要求所有数组具有相同的维度(ndim相等)、且在非拼接轴大小一致 ?...;另外可设置排序算法,如快排、堆排或归并等 08 视图与拷贝 ?...axis从小到大对应轴的出场顺序先后,或者说变化快慢:axis=0对应主轴,沿着行变化的方向,可以理解为在多重for循环中最外面的一层,对应行坐标,数值变化最慢;而axis=1对应次轴,沿着列变化的方向...,在多重for循环中变化要快于axis=0的轴向。
领取专属 10元无门槛券
手把手带您无忧上云