Tune——基于Ray的中间库,主要功能是调参(如使用BPT算法异步调参)和多实验排队管理 RLLib——基于Ray的分布式和Tune的调参,实现抽象RL算法,可支持层次RL和Multi Agent学习等...1 Ray使用场景—多进程(通过ray.remote装饰器实现) 2 Ray使用场景—进程间通信 通过拿到远程函数的ID,可以在集群的任何地方,通过get(ID)获取该函数返回值 3 Tune...若目前CPU已满,则等待,下图所示为8个CPU正在作业,剩余2个实验正在等待中 4 RLLib使用场景—RL算法 RLLib基于Tune和Ray实现强化学习算法,下图基于IMPALA框架,图中Trainer...Obj ID从而获取数据 在Slurm集群上的脚本案例 6.2 Ray系统架构—内存管理 7 Tune系统架构(实验资源分配+调参) Tune同时维护多个实验,合理为每个实验的不同请求分配资源...PBT使得参数调整之间并非独立,会将好的其他参数(如学习率)拿到其他较差的参数(折扣因子)中进行试探,使得在不额外增加计算资源的情况下快速调优 8 RLLib系统架构(Trainer、Policy和Agent
凭借8192个核心,我们在3.7分钟的中位时间内获得6000奖励,这是最佳公布结果的两倍 大规模测试:我们评估RLlib在进化策略(ES),近端政策优化(PPO),和A3C的性能,对建立专门的系统比较...在所有实验中使用相同的超参数(包括在补充材料中)。我们使用TensorFlow为所评估的RLlib算法定义神经网络。 ?...PPO-ES:我们尝试实现一种新的RL算法,该算法在ES优化步骤的内循环中运行PPO更新,该步骤随机扰乱PPO模型。在一小时内,我们就可以部署到一个小型集群进行评估。...该实现只需要约50行代码,并且不需要修改PPO实现,显示了分层控制模型的价值。在我们的实验中(参见补充材料),PPO-ES的性能优于基础PPO,在Walker2d-v1任务上收敛速度更快,回报更高。...可以跑一个ray 集群,按需跑任务就行了。
随着机器学习算法和技术的进步,越来越多的机器学习应用程序需要多台机器,而且必须利用并行性。但是,在集群上进行机器学习的基础设施仍然是专门设置的。...这些努力相当于是多余的。 举个例子,采取一个概念上简单的算法,如进化策略强化学习(Evolution Strategies for reinforcement learning)。...该算法大约有十几行伪代码,其Python实现并不多。但是,在较大的机器或集群上高效地运行算法需要更多的软件工程。...Ray的目标之一是使实践者能够将运行在笔记本上的原型算法转换成高效的分布式应用程序,该应用程序可以高效地在集群上运行(或者在单一的多核机器上),而且代码的额外行数相对较少。...Ray.tune支持网格搜索,随机搜索和更复杂的早期停止算法,如HyperBand。 更多信息 有关Ray的更多信息,请查看以下链接。
随着机器学习的算法和技术的进步,越来越多的机器学习应用程序需要多台机器,并且必须利用并行性。但是,在集群上进行机器学习的基础设施仍然是特设的。...这相当于多余的努力。 举例来说,采取一个概念上简单的算法,如强化学习的进化策略。该算法大约有十几行伪代码,其Python实现并不多。但是,在较大的机器或集群上高效地运行算法需要更多的软件工程。...Ray(高性能分布式执行框架)的其中一个目标是使从业者能够将一个运行在笔记本电脑上的原型算法,用相对较少的代码行使之成为一个高性能的分布式应用程序并在集群(或多个单核机器)上高效运行。...较高级别的库建立在较低级别的API之上。目前这些包括Ray RLlib,一个可扩展的强化学习库和Ray.tune,一个高效的分布式超参数搜索库。...for _ in range(4): worker_task.remote(parameter_server) Ray高级库 Ray RLlib是一个可扩展的强化学习库,可在许多机器上运行。
函数式编程的主要思想之一是程序可以主要由纯函数组成,即,其输出完全由其输入决定的函数。少得多的是:通过对功能可以执行的限制,获得了更容易地推理和操纵其执行的能力。 ?...鉴于PyTorch(即命令执行)的日益普及和TensorFlow 2.0的发布,看到了通过功能性地重写RLlib算法来改善RLlib开发人员体验的机会。...在紧急模式下,将同时调用action_fn和loss_fn来分别生成操作分配和策略丢失。请注意这里没有显示通过action_fn进行的区分,但这确实发生在DQN之类的算法中。...在笔记本电脑处理器上使用“ rllib train -run = PG -env = [-eager [-trace]]”测量的急切推断和梯度开销。...在RLlib中实现并验证了这些想法。除了使支持新功能(如渴望执行)变得容易之外,还发现功能范式导致代码更加简洁和易于理解。
然而,在集群计算设备上运行的机器学习算法目前仍是专门设计的。...尽管对于特定的用例而言(如参数服务器或超参数搜索),这些解决方案的效果很好,同时 AI 领域之外也存在一些高质量的分布式系统(如 Hadoop 和 Spark),但前沿开发者们仍然常常需要从头构建自己的系统...算法包含数十行伪代码,其中的 Python 实现也并不多。然而,在较大的机器或集群上运行它需要更多的软件工程工作。...Ray 的目标之一在于:让开发者可以用一个运行在笔记本电脑上的原型算法,仅需添加数行代码就能轻松转为适合于计算机集群运行的(或单个多核心计算机的)高性能分布式应用。...Ray.tune 支持网格搜索、随机搜索和更复杂的早停算法,如 HyperBand。 ?
在并行化这个问题上,python由于其全局锁的存在使得自身的多线程在计算密集型任务上显得鸡肋。多进程虽然可以绕开全局锁问题,但是进程间通讯会提升开发复杂度,并且性能提升空间受限于机器的CPU数量。...Server端获取计算资源:通过把Agent类部署到别的机器上或者CPU集群中,Server这端通过RemoteManager就可以获取到远端的Agent类,此后在Server这边可以通过获取到的Agent...目前,IMPALA算法的实现已经完整开源在PARL仓库中,相关的性能指标见下图。 ?...性能对比 为了让用户更好地了解PARL的并行性能,我们将PARL与基于Ray实现的强化学习并行框架Rllib进行对比。...为此,我们对比了PARL以及Rllib实现的IMPALA算法在雅达利游戏上的数据吞吐量(1 P40 GPU+32CPU): ?
此外,MALib 基于 Ray 的底层分布式框架,实现了全新的中心化任务分发模型,相较于常见的多智能体强化学习训练框架(RLlib,PyMARL,OpenSpiel),相同硬件条件下吞吐量和训练速度有着数倍的提升...实际上,现有分布式强化学习框架对于一般多智能体强化学习算法的分布式计算支持是完全不够的,像 RLlib、Sample-Factory、SEED RL 这样的典型分布式强化学习框架,在设计模式上都是将多智能体任务当作单智能体任务来处理...针对这一场景,MALib 基于 Ray 的分布式执行框架,实现了一个灵活可自定义的多智能体强化学习并行训练框架,并且对基于种群的训练做了特别优化,不仅仅可以实现类似于星际争霸 2 中的 League 机制...在训练范式层面,MALib 使用同步 / 异步,中心化 / 去中心化等模式,对不同类型的多智能体强化学习算法的训练进行抽象,并通过统一的 AgentInterface,实现了包括独立学习者,中心化训练去中心化执行...系统方面,除了面向多智能体强化学习种群训练的系统 MALib,本团队研发 SMARTS、CityFlow、MAgent 等大规模智能体强化学习仿真引擎,累计在 Github 上获得了超过 2000 加星
使用Ray并行化你的强化学习算法(一) 前言 强化学习算法的并行化可以有效提高算法的效率。...并行化可以使单机多cpu的资源得到充分利用,并行化也可以将算法中各个部分独立运行,从而提高运行效率,如将环境交互部分和训练网络部分分开。...Ray提供了统一的任务并行和actor抽象,并通过共享内存、零拷贝序列化和分布式调度实现了高性能。 Ray里面还有用来调超参数的库Tune和可扩展规模的强化学习库Rllib。...] 使用Ray,可以使你的代码从单机运行轻松地扩展到大集群上运行。...我们在类的定义上面加上修饰器ray.remote。这个类的实例就会是一个Ray的actor。每一个actor运行在自己的python进程上。
它使你能够将训练扩展到大型分布式服务器,或者利用并行化特性来更有效地使用你自己的笔记本电脑进行训练。 我们展示了如何使用Ray和RLlib在OpenAI Gym上构建一个自定义的强化学习环境。...一个RLlib教程 一旦你用pip install ray[rllib]安装了Ray和RLlib,你就可以用命令行中的一个命令来训练你的第一个RL代理: rllib train --run=A2C -...RLlib代理 可以通过ray.rllib.agents访问的各种算法。...在这里,你可以找到在PyTorch和Tensorflow中的不同实现:https://github.com/ray-project/ray/tree/master/rllib/agents。...使用自定义环境的技巧 如果你习惯于从环境构建自己的模型到网络和算法,那么在使用Ray时需要了解一些特性。
上预训练好的词向量。...实验表明,PoseNet能显着提高基于CNN的序列到序列学习的准确性,在WMT 2014英语到德语翻译任务中获得大约33-36的BLEU分数,在英语到法语翻译任务中获得44-46的BLEU分数。...▌3.Ray RLLib库:一个可组合、可伸缩的强化学习库 标题:Ray RLLib: A Composable and Scalable Reinforcement Learning Library...作者通过在Ray之上构建Ray RLLib来证明这一原理,并证明了可以通过组合和重用少数标准组件来实现各种最先进的算法。...Ray RLLib可作为Ray的一部分使用:参考https://github.com/ray-project/ray/。
在执行这些任务时,你还希望尽可能多地使用底层硬件,以便获得更高的速度。Python 代码的并行化可以实现这一目标。...Input index: 9 run_complex_operations took 34.495sec 如你所见,在本文中使用的笔记本电脑上执行这段代码大约花了 34.5 秒。...默认情况下,Ray 为每个 CPU 核创建一个进程。如果希望在集群上运行 Ray ,则需要传入一个类似于ray.init(address='insertAddressHere') 的集群地址。...用装饰器 @ray.remote 装饰一个普通的 Python 函数,从而实现创建一个 Ray 任务。这个操作可以在笔记本电脑 CPU 核之间(或 Ray 集群)实现任务调度。...Ray 的优点 Ray 的劣势 支持并行计算和分布计算 针对更大型的业务才会有显著效果 可以在 Jupyter 上使用 能够应用于现有的常见机器学习和神经网络库 整合了多个 Ray 库,如 RLlib
3、Ray Core 包括一个由应用程序、库和工具组成的大型生态系统,以支持复杂的应用程序。比如 Tune、RLlib、RaySGD、Serve、Datasets、Workflows。...程序执行的过程中,你可以输入 http://127.0.0.1:8265/#/ 查看分布式任务的执行情况: 那么如何实现 Ray 集群计算呢?接着往下看。...使用 Ray 集群 Ray 的优势之一是能够在同一程序中利用多台机器。当然,Ray 可以在一台机器上运行,因为通常情况下,你只有一台机器。但真正的力量是在一组机器上使用 Ray。...你可以在 AWS、GCP、Azure、Kubernetes、阿里云、内部部署和 Staroid 上甚至在你的自定义节点提供商上使用集群启动器。...address='172.17.0.2:6379' --redis-password='5241590000000000' 在另一个节点执行上述命令,即可启动 worker 节点: 如果要关闭,执行
3、Ray Core 包括一个由应用程序、库和工具组成的大型生态系统,以支持复杂的应用程序。比如 Tune、RLlib、RaySGD、Serve、Datasets、Workflows。...程序执行的过程中,你可以输入 http://127.0.0.1:8265/#/ 查看分布式任务的执行情况: [图片] 那么如何实现 Ray 集群计算呢?接着往下看。...使用 Ray 集群 Ray 的优势之一是能够在同一程序中利用多台机器。当然,Ray 可以在一台机器上运行,因为通常情况下,你只有一台机器。但真正的力量是在一组机器上使用 Ray。...你可以在 AWS、GCP、Azure、Kubernetes、阿里云、内部部署和 Staroid 上甚至在你的自定义节点提供商上使用集群启动器。...,执行: ray stop 4、执行任务 随便选择一个节点,执行下面的脚本,修改下 ray.init() 函数的参数: from collections import Counter import socket
Tomas Mikolov的文章必属精品,现在许多自然语言处理任务都非常依赖在大型文本语料库(如新闻语料集,维基百科和爬取得网页)上预训练好的词向量。...在本文中,作者展示了如何通过将已有的各种技巧组合来训练高质量的词向量,而这些技巧通常很少被一起使用。 主要成果是提供一系列公开可用的预训练模型,这些模型在许多任务上大大优于现有技术。 ▌2....实验表明,PoseNet能显着提高基于CNN的序列到序列学习的准确性,在WMT 2014英语到德语翻译任务中获得大约33-36的BLEU分数,在英语到法语翻译任务中获得44-46的BLEU分数。...作者通过在Ray之上构建Ray RLLib来证明这一原理,并证明了可以通过组合和重用少数标准组件来实现各种最先进的算法。...Ray RLLib可作为Ray的一部分使用:参考https://github.com/ray-project/ray/。 ▌4.
Rllib ray 为了达到极致性能,它的代码变得复杂,学习成本很高,需要安装全家桶才能使用(除此以外全是优点)。如果你用不了 Rllib ray,那么你才需要考虑使用「小雅 ElegantRL」。...任何 state 都可以 flatten 成 1D,因此在设计 Buffer 的时候,我可以将完整的 state transition( state1D,reward,action1D)保存在一块连续的内存上...我这里从高性能计算的角度讲一下她们的区别: 有监督的深度学习(如:在 ImagNet 上使用监督数据训练分类器)。...如果追求极致的性能,在 2021 年我不推荐除了伯克利的 Rllib ray-project 以外的其他库。...但是 stable-baselines 也不够 stable,如果将它对比 Rllib ray-project 就能很明显地体会到,可惜 Rllib ray 的门槛太高,很少人发声。
尽管这些是“集成的”,但它们肯定不是在公园中散步时使用的。 Torch的AWS教程演示了要简单地使集群运行就必须遵循的许多设置步骤,并且Tensorflow 2.0存在很多问题。...在p3dn.24xlarge实例上比较Horovod vs Ray(在后台使用Pytorch分布式DataParallel)。Horovod和Ray在不同规模上的表现相似。...无论有没有混合精度,Ray都能更好地扩展,在8个GPU上的性能提高了20%。 RaySGD建立在Ray之上,Ray是用于快速,简单的分布式计算的框架。...这个简单的脚本将下载CIFAR10并使用ResNet18模型进行图像分类。只需更改一个参数(num_workers=N)就可以在多个GPU上运行。 如何在整个集群中扩展PyTorch训练?...别担心,这只是4个额外的步骤。将演示如何在AWS 上运行RaySGD,但是在SLURM,Azure,GCP或本地群集上运行同样容易。
,使优化算法可以在4-5行代码中实现。...核心主要包括: • 任务:在集群中执行的无状态功能。 • 行为者:在集群中创建的有状态的工作者进程。 • 对象:可在集群中访问的不可变的值。...Ray AIR主要包括: • 数据集:分布式数据预处理 • 训练:分布式训练 • 调试:可扩展的超参数调控 • RLlib: 可扩展的强化学习 • 服务:可扩展和可编程的服务 Ray可以在任何机器、集群...• 它在分布式模式下的运行速度会有多快? 在Uber内部,MPI模型要简单得多,需要修改的代码比以前的解决方案(如带有参数服务器的分布式TensorFlow)少得多。...我们的框架直接建立在PyTorch上,使你可以很容易地训练自己的模型,并使用Flair嵌入和类来实验新方法。 5.
例如在 NVIDIA DGX-A100(256 核 CPU 服务器)上的测试结果表明,Atari 游戏能够跑出每秒一百多万帧的惊人速度,Mujoco 物理引擎的任务更是能跑出每秒三百多万模拟步数的好成绩...与此同时,EnvPool + CleanRL 的整系统测试表明,使用原始的 PPO 算法,直接把原来基于 Python Subprocess 的主流解决方案替换成 EnvPool,整体系统在标准的 Atari...支持了目前 PyTorch 最为流行的两个算法库 Stable-baselines3 和 Tianshou,同时还支持了 ACME、CleanRL 和 rl_games 等强化学习算法库,并且达到了令人惊艳的效果...更为明显,使用原始 PPO 算法在不到 5 分钟的时间内达到了超过 5000 的 reward,而基于 ray 的解决方案运行了半小时还没达到 5000。...设置 max_epochs 为 1000 之后运行,在 2 分 36 秒之后运行完毕,并且 reward 超过了 5300: 相比 RLLib 和 SeedRL 等工作,使用几百个 CPU 核心的分布式计算
Astra 的部署系统架构如上图,在 Poseidon/算力/太极/Gemini 等多个资源平台基础上扩展多个tke模块,组成拥有数百万核CPU、万卡GPU级别的超大集群。...其中,log是一个经验值,在log后,算法在高负载时表现较好;3) (当前利用率/节点当前并发)本质上是机器性能的体现,假设大盘下每个任务同一时刻的消耗是接近的时,这个公式成立。...,单个Ray集群都拥有完整的功能。...我们还在 Ray 联邦集群架构基础上,增强了 Ray集群的容灾能力,具体策略为:当head node下线,则水平重新扩容一个Ray集群。...同时,在Ray的基础上,简化了Ray本身集群管理的难度,并使用低成本的闲置资源节省了大量的机器成本。
领取专属 10元无门槛券
手把手带您无忧上云