您可以使用 AWS Glue 控制台发现数据,转换数据,并使数据可用于搜索和查询。控制台调用底层服务来协调转换数据所需的工作。...https://docs.aws.amazon.com/zh_cn/glue/latest/dg/what-is-glue.html Amazon Athena 是一种交互式查询服务,让您能够轻松使用标准...SQL 直接分析 Amazon S3 中的数据。...只需在 AWS 管理控制台中单击几下,客户即可将 Athena 指向自己在 S3 中存储的数据,然后开始使用标准 SQL 执行临时查询并在数秒内获取结果。...Athena 没有服务器服,因此没有需要设置或管理的基础设施,客户只需为其执行的查询付费。您可以使用 Athena 处理日志、执行即席分析以及运行交互式查询。
在执行查询之前,还需要更加深入的了解执行查询计划的时间复杂度。 最后,应该了解如何进一步的调整你的查询语句。 为什么要学SQL?...然后,优化器的任务是为给定的查询,寻找最佳执行或查询计划。执行计划准确地定义了每个操作所使用的算法,以及如何协调操作的执行。...如果还有相关使用exists的子查询,那么就应该在select语句中使用常量,而不是选择实际列的值。当检查实体时,这是特别方便的。...请记住,相关子查询是使用外部查询中的值的子查询,并且在这种情况下,NULL是可以作为“常量”的,这点确实令人困惑!...在逻辑上,实际执行计划更为有用,因为它包含了执行查询时,实际发生的其它细节和统计信息。
今天刷MYSQL题的时候刷到这样一个题: 编写一个 SQL 查询,获取 Employee 表中第二高的薪水(Salary) 。...,可以使用max和min去查询出来,但对于第N的就不好找了,思考了一会儿了,心里大致有二个思路: 第一个思路,因为是求的第二高,那就把最高的找出来,小于的它的,然后再排列一下取最大的就行了 # 1、求最大的值...如果查询不到数据,应该返回什么值,需不需对这种情况进行封装的考虑,这道题里已经要求了,若是没有查询到就输出null,所以再次修改了我的sql: select ifnull(...知识点总结: LIMIT LIMIT 一般都是放在SQL语句的最后,是对展示的结果做一个限制输出,比如查询了十条记录,但只展示一条,那就可以在SQL语句后面加一个LIMIT 1。...最后给大家留一个变种之后难度更高的题,欢迎大家在留言区中给出答案: 编写一个 SQL 查询,获取 Employee 表中第 n 高的薪水(Salary)。
其中包括亚马逊云科技的几个重要法宝: Amazon Athena 交互式查询服务,支持使用标准SQL语句在S3上分析数据。...这些法宝,各有各的勇武之地。 比如,面对Amazon S3当中结构化、半结构化、非结构化数据,我们如何来进行查询和分析呢?这时候,Amazon Athena就派上了用场。...Amazon Athena可以帮助我们使用熟知的标准SQL语句来创建数据库、创建表、查询数据、并让数据结果可视化。 再比如,互联网程序员每天都要面对海量的日志,如何更高效地存储和查询日志呢?...您可以使用Amazon Glue Elastic Views,通过 PartiQL语言(一种兼容 SQL 的开源查询语言)编写查询来创建具体化视图。...此外,刚才我们提到的Amazon Redshift与Athena还支持联合查询,可以跨多种存储方案在运营数据库、数据仓库以及数据湖间对数据执行查询,无需任何数据移动即可提供跨数据湖洞见,消除了设置并维护复杂的提取
接下来是查询层,如Athena或BigQuery,它允许您通过一个简单的SQL接口来探索数据湖中的数据。...Athena是一个由AWS管理的查询引擎,它允许您使用SQL查询S3中的任何数据,并且可以处理大多数结构化数据的常见文件格式,如Parquet、JSON、CSV等。...在下面的图表中,您可以看到这些是如何组合在一起的。 使用元数据填充后,Athena和EMR在查询或访问S3中的数据时可以引用位置、类型等的Glue目录。...From: https://docs.aws.amazon.com/athena/latest/ug/glue-athena.html 计算层:EMR 除了一次性查询和探索性分析之外,如果您想修改或转换数据...这为您提供了一个非常便宜、可靠的存储所有数据的地方。 从S3中,很容易使用Athena查询数据。Athena非常适合进行探索性分析,它有一个简单的UI,允许您针对S3中的任何数据编写SQL查询。
而Amazon Athena是一种交互式查询服务,让您能够轻松使用标准 SQL 直接分析Amazon S3中的数据。...Amazon Athena 是一种交互式查询服务,让您能够轻松使用标准SQL分析Amazon S3中的数据。只需指向存储在 Amazon S3中的数据,定义架构并使用标准SQL开始查询。...同时在中国上线的还有Amazon Athena,它是一种交互式查询服务,让客户可以使用标准SQL语言、轻松分析Amazon S3中的数据。...使用Athena分析Amazon S3中的数据就像编写SQL查询一样简单。Athena使用完整支持标准SQL的Presto,可以处理各种标准数据格式,包括CSV、JSON、ORC和Parquet。...因为Athena使用多个可用区的计算资源执行查询,而且使用Amazon S3作为底层数据存储,所以它具有高可用性和持久性,数据冗余存储在多处基础设施中,并且是每处基础设施上的多个设备上。
快捷的数据查询引擎 在 AWS 上,Amazon S3 对象存储服务由于其高可用性、高持久性、可扩展性和数据格式兼容性等特点,成为了建设数据湖的首选。...而 AWS 还提供了交互式查询方式可以直接查询 S3 中的数据,Amazon Athena 便是一种交互式查询服务。...它可以使用标准 SQL 分析 Amazon S3 中的数据,Athena 简单易用,只需指向开发者存储在 S3 中的数据,定义架构即可开始查询,它无需执行复杂的 ETL 作业来为数据分析做准备,开发者可以轻松实现分析大规模数据集...存入目录后,数据便可立即供 ETL 搜索、查询和使用。...Amazon Redshift Spectrum 是 Amazon Redshift 的一项功能, (提示:避免到 console 中搜索 spectrum)AWS 选择开发者熟悉的 SQL 语言,也旨在帮助更多开发者轻松实现查询数据
▲图13-6 使用数据湖ETL流水线处理数据 在这里,ETL流水线使用Amazon Athena对存储在Amazon S3中的数据进行临时查询。...使用Amazon Athena,你可以在数据存储时直接从Amazon S3中查询,也可以在数据转换后查询(从聚合后的数据集)。...Pig的Latin脚本包含关于如何过滤、分组和连接数据的指令,但Pig并不打算成为一种查询语言。Hive更适合查询数据。Pig脚本根据Pig Latin语言的指令,编译并运行以转换数据。...11 Amazon Athena Amazon Athena是一个交互式查询服务,它使用标准ANSI SQL语法在Amazon S3对象存储上运行查询。...Amazon Athena建立在Presto之上,并扩展了作为托管服务的临时查询功能。
以Amazon的Athena为例,Athena不是一个数据仓库软件,而是一个基于开源FaceBook Presto开发的按需查询引擎,它将按需提供“计算”资源查询数据作为一项服务来提供。...Amazon的Redshift Spectrum和Athena一样可以查询数据湖中的数据,利用的是从一个Redshift集群中分离出来的计算资源。...可以通过Athena这类的查询引擎或者像Redshift、BigQuery、Snowflake等“仓库”来查询数据湖数据内容,这些服务提供计算资源,而不是提供一个数据湖。...▲数仓或SQL查询引擎的典型工作流 正如之前所说的,这和数仓旨在反映既定事务数据的基本前提相矛盾。一个更好的历史数据比较不是在数仓和数据湖之间进行,而是在ODS和数据湖之间进行。...例如,术语“数据仓库”和数据湖定义一样模糊而不断变化(见错误认知2),在谷歌上搜索“失败的数据仓库”,也会发现一些关于项目失败的故事。
实现概述 技术架构组件 实现步骤概览 第一步:构建数据湖的基础 第二步:选择并查看数据集 第三步:在 Athena 中搭建架构 第四步:数据转换与优化 第五步:查询和验证数据 第六步:将更多数据添加到表...接下来,我将深入探索如何利用 S3 Express One Zone、Amazon Athena和Amazon Glue 来打造一个高性能且成本效益显著的数据湖。...• Amazon Athena:用于查询存储在 S3 Express One Zone 中的数据。 • Amazon Glue:数据目录和 ETL 作业。...Athena 中搭建架构 在 Athena 控制台中执行查询。...首先,找出年份中每个值的不同 ID 的数量: 查询原表: SELECT substr("date",1,4) as year, COUNT(DISTINCT id) FROM original_csv
以Amazon的Athena为例,Athena不是一个数据仓库软件,而是一个基于开源FaceBook Presto开发的按需查询引擎,它将按需提供“计算”资源查询数据作为一项服务来提供。...Amazon的Redshift Spectrum和Athena一样可以查询数据湖中的数据,利用的是从一个Redshift集群中分离出来的计算资源。...数仓或SQL查询引擎的典型工作流 正如之前所说的,这和数仓旨在反映既定事务数据的基本前提相矛盾。一个更好的历史数据比较不是在数仓和数据湖之间进行,而是在ODS和数据湖之间进行。...例如,术语“数据仓库”和数据湖定义一样模糊而不断变化(见错误认知2),在谷歌上搜索“失败的数据仓库”,也会发现一些关于项目失败的故事。...使用无代码、全自动和零管理的Amazon Redshift Spectrum或Amazon Athena Services来启动你的工作。
有问题的数据项将是这个表示消息的简单 JSON 对象: { id: 2321387 sender: “Joe” message_content: “Hello World Message” } 公开这些数据的最无争议的方式可能是...将您的数据保存在 S3 中并让消费者使用 Athena/Presto/BigQuery 在其上运行查询怎么样?在这个用例中封装数据发生了什么?...Amazon Athena 就是一个很好的例子,因为它通过多台服务器并行运行您的查询,因此您的数据消费者可以利用 Athena 的强大功能进行快速的大数据查询。有什么选择?...您会在自己的服务中构建类似的功能并通过 Web API 公开它们吗?您将如何通过 Web API 公开丰富的 SQL 语言?GraphQL 能否涵盖 SQL 提供的所有选项?...如果一切都严格通过您的服务进行,则意味着您的开发人员将需要在他们自己的服务中重写这些技术的功能,或者只是在逻辑上降级数据存储的真正底层功能。 总结 您需要在内部和共享之间逻辑划分数据。
这种方法最适合那些需要从大表中读取某些列的查询。 Parquet 只需读取所需的列,因此大大减少了 IO。...Apache Parquet 最适用于交互式和无服务器技术,如 AWS Athena、Amazon Redshift Spectrum、Google BigQuery 和 Google Dataproc...即使 CSV 文件是数据处理管道的默认格式,它也有一些缺点: Amazon Athena 和 Spectrum 将根据每次查询扫描的数据量收费。...谷歌和亚马逊将根据存储在 GS/S3 上的数据量向您收费。 Google Dataproc 收费是基于时间的。...下面展示如何通过spark读写parquet文件。
; 易于使用的界面,用于浏览和可视化数据; 创建和共享仪表板; 一个轻量级的语义层,允许通过定义维度和度量来控制数据源如何向用户公开; 一个可扩展的、高粒度的安全模型,允许复杂的规则对谁可以访问哪些产品特征和数据集...,Superset支持sql查询,这太方便了,Tableau似乎不可以。...使用SQL Lab查询和可视化数据: 你可以导入csv等文本文件,并连接数据库。...Superset支持的数据库: MySQL Oracle PostgreSQL Presto Snowflake SQLite SQL Server Teradata Vertica Hana Amazon...Athena Amazon Redshift Apache Drill Apache Druid Apache Hive Apache Impala Apache Kylin Apache Pinot
AWS Athena和Google BigQuery都是亚马逊和谷歌各自云上的优秀产品,有着相当高的用户口碑。...我们先以AWS Athena为例来看看所谓面向云存储的交互式查询是如何工作的。我们准备了一个约含一千行数据的小型csv文件,放置在s3存储中,然后使用Athena建立一个外部表指向此csv文件: ?...其主要支持的查询语言是U-SQL,一个结合了SQL与C#特点的独有语言。 百闻不如一见,我们还是直接动手尝试一下,使用ADLA来实现上面Athena的同样任务。...任务(Job)是ADLA中的核心概念,我们可以新建一个任务,配以一段U-SQL脚本来表达和前面Athena例子中SQL相同的语义:(ADLA没有交互式查询窗口,所以我们把结果落地存储到一个csv文件中)...作为第二种方法,我们可以借助源自SQL Server体系的一项神奇技术。欲知详情如何,且听下回分解。
此前Apache Hudi社区一直有小伙伴询问能否使用Amazon Redshift(数仓)查询Hudi表,现在它终于来了。...现在您可以使用Amazon Redshift查询Amazon S3 数据湖中Apache Hudi/Delta Lake表数据。...Amazon Redshift Spectrum作为Amazon Redshift的特性可以允许您直接从Redshift集群中查询S3数据湖,而无需先将数据加载到其中,从而最大限度地缩短了洞察数据价值时间...要查询Apache Hudi的Copy-On-Write(CoW)格式的数据,可以使用Amazon Redshift-Spectrum外表。...LOCATION 's3://s3-bucket/prefix/partition-path' Apache Hudi最早被AWS EMR官方集成,然后原生集成到AWS上不同云产品,如Athena、Redshift
Parquet数据文件的布局已针对处理大量数据的查询进行了优化,每个文件的千兆字节范围内。 Parquet构建为支持灵活的压缩选项和有效的编码方案。...Apache Parquet最适合与AWS Athena,Amazon Redshift Spectrum,Google BigQuery和Google Dataproc等交互式和无服务器技术配合使用。...即使CSV文件是数据处理管道的默认格式,它也有一些缺点: Amazon Athena和Spectrum将根据每个查询扫描的数据量收费。...Google和Amazon将根据GS / S3上存储的数据量向您收费。 Google Dataproc收费是基于时间的。...数据集 Amazon S3的大小 查询运行时间 扫描数据 成本 数据存储为CSV文件 1 TB 236秒 1.15 TB $ 5.75 以Apache Parquet格式存储的数据 130 GB 6.78
为了方便理解,也方便通过 Demo 演示,潘超将这套架构体系,同等替换为了亚马逊云科技现有产品体系,包括:Amazon Athena、Amazon Aurora 、Amazon MSK、Amazon EMR...3 Amazon EMR 存算分离及资源动态扩缩 Amazon EMR 是托管的 Hadoop 生态,常用的 Hadoop 组件在 EMR 上都会有,但是 EMR 核心特征有两点,一是存算分离,二是资源动态扩缩...当然,在具体的实践过程中,仍需要开发者对数据湖方案有足够的了解,才能切合场景选择合适的调参配置。 Q/A 问答 1. 如何从 Apache Kafka 迁移至 Amazon MSK?...cdc 到 hudi 的延迟如何?.../ Amazon EMR 在 Spark 2.x 上比开源 Spark 快 2~3 倍以上 Amazon Presto 比开源的 PrestoDB 快 2.6 倍。
高性能查询:针对复杂查询进行了优化,适合高性能数据分析。数据清洗:数据需在加载前进行转换和清洗,保证数据的一致性和准确性。数据湖与数据仓库的适用场景数据湖和数据仓库在不同的应用场景中各有优势。...代码示例以下是如何在AWS上创建数据湖和数据仓库的简要示例。...查询数据athena_client = boto3.client('athena')query = "SELECT * FROM my_data_lake_db.local_data"response...}, ResultConfiguration={'OutputLocation': f's3://{bucket_name}/output/'})数据仓库(Amazon Redshift):--...数据湖适用于存储海量、多样化的原始数据,适合数据科学和大数据分析;而数据仓库则专注于高性能的数据查询和分析,适合商业智能和报表生成。
通过SparkSession帮助可以创建DataFrame,并以表格的形式注册。其次,可以执行SQL表格,缓存表格,可以阅读parquet/json/csv/avro数据格式的文档。...dataframe = sc.read.json('dataset/nyt2.json') dataframe.show(10) 使用dropDuplicates()函数后,我们可观察到重复值已从数据集中被移除...10、缺失和替换值 对每个数据集,经常需要在数据预处理阶段将已存在的值替换,丢弃不必要的列,并填充缺失值。pyspark.sql.DataFrameNaFunction库帮助我们在这一方面处理数据。...查询 原始SQL查询也可通过在我们SparkSession中的“sql”操作来使用,这种SQL查询的运行是嵌入式的,返回一个DataFrame格式的结果集。...# End Spark Session sc.stop() 代码和Jupyter Notebook可以在我的GitHub上找到。 欢迎提问和评论!
领取专属 10元无门槛券
手把手带您无忧上云