首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在深度学习竞赛中获得前五名

在这些文件夹中的每个文件夹中,都必须使用图像标签作为文件夹名称来对图像进行进一步分类(如先前的屏幕快照所示),PyTorch将自动分配其标签。...在训练过程中,随机裁剪,更改颜色,亮度,对比度,旋转或翻转图像,以便每次通过数据集时,神经网络都会看到同一图像的不同变化。因此这些变化会扩大数据集并向数据集“添加更多”。...亮度 从图像中可以看出,产品是在不同的光照条件下拍摄的,并且具有不同的亮度阴影(尽管颜色相同,但有些图像明显比其他图像暗)。...随着我们的进一步发展,最后几个卷积层将获得更高级别的特征,例如狗的头。最后几层中的这些功能对于网络尝试分类的内容越来越具体。...(关键)Webscraping扩展训练图像 该规则的挑战状态:作为一个现实世界的应用程序的问题,希望求解器使用图像数据/功能,如颜色,形状,过筛等,或深学习方法的形象造型。

78320
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    如何在 Tableau 中对列进行高亮颜色操作?

    比如一个数据表可能会有十几到几十列之多,为了更好的看清某些重要的列,我们可以对表进行如下操作—— 对列进行高亮颜色操作 原始表中包含多个列,如果我只想看一下利润这一列有什么规律,眼睛会在上下扫视的过程中很快迷失...对利润这一列进行颜色高亮 把一列修改成指定颜色这个操作在 Excel 中只需要两步:①选择一列 ②修改字体颜色 ,仅 2秒钟就能完成。...尝试在 Tableau 中对列加点颜色 在 Excel 中只需 2秒完成的操作,在 Tableau 中我大概花了 20分钟才搞定——不是把一列搞得五彩斑斓,就是变成了改单元格背景色。...不过这部分跟 Excel 中的操作完全不一样,我尝试对每一个能改颜色的地方都进行了操作,没有一个能实现目标。 ?...自问自答:因为交叉表是以行和列的形式展示的,其中SUM(利润)相当于基于客户名称(行的维度)对其利润进行求和,故对SUM(利润)加颜色相当于通过颜色显示不同行中数字所在的区间。

    5.8K20

    赛后跟踪:如何在 ImageNet 比赛中获得冠军?

    Hikvision(海康威视)是如何在场景识别一项中夺得冠军的?今天雷锋网请到了海康威视首席科学家、海康威视研究院常务副院长蒲世亮先生为我们讲解ILSVRC2016相关的详细细节。 ?...其个人曾获第十九届求是杰出青年奖、浙江省有突出贡献中青年专家、浙江省科学技术进步一等奖、杭州市131中青年人才等多项荣誉;已申请发明专利90多件,获得授权发明专利11件,并在知名期刊、国际知名会议ICDAR...▎请仔细回顾一下,你们在场景识别比赛中最终获得表现最佳经历了什么? 先说一下,场景识别比赛的主要的难点是训练数据的极度不均衡,而且数据标签具有二义性。在训练过程中,我们做了以下工作。...最后,我们的模型在28支队伍的92次结果提交中,脱颖而出,获得了第一名,top5 的分类准确率达到了91%。 ▎你们如何取得这个比赛冠军的。表现出色的核心是什么?...研究院在KITTI、MOT、Pascal VOC等世界级人工智能竞赛中曾获得多个第一的好成绩。

    1.5K50

    随机加权平均 -- 在深度学习中获得最优结果的新方法

    这种方法通过结合相同网络结构不同训练阶段的权重获得集成模型,然后进行预测。...为了从快照集成或者FGE中获益,需要存储多种模型并得出这些模型的预测,然后对这些预测求平均,作为最终的预测。因此,集合的附加性能需要消耗更多的计算。所以没有免费的午餐。或许是有的?...这是一篇关于随机加权平均的新论文所获得的成果。 随机加权平均(SWA,Stochastic Weight Averaging) 随机加权平均和快速几何集成非常近似,除了计算损失的部分。...第一个模型存储模型权重的平均值(公式中的 w_swa )。这就是训练结束后的最终模型,用于预测。 第二个模型(公式中的w)变换权重空间,利用循环学习率策略找到最优权重空间。 ?...而预测时,只需要一个当前的平均模型进行预测。用这个模型做预测,比前面提到的方法,速度快得多。之前的方法是用集合中的多个模型做预测,然后对多个预测结果求平均。

    2K20

    【DB笔试面试511】如何在Oracle中写操作系统文件,如写日志?

    题目部分 如何在Oracle中写操作系统文件,如写日志? 答案部分 可以利用UTL_FILE包,但是,在此之前,要注意设置好UTL_FILE_DIR初始化参数。...image.png 其它常见问题如下表所示: 问题 答案 Oracle中哪个包可以获取环境变量的值? 可以通过DBMS_SYSTEM.GET_ENV来获取环境变量的当前生效值。...在CLIENT_INFO列中存放程序的客户端信息;MODULE列存放主程序名,如包的名称;ACTION列存放程序包中的过程名。该包不仅提供了设置这些列值的过程,还提供了返回这些列值的过程。...如何在存储过程中暂停指定时间? DBMS_LOCK包的SLEEP过程。例如:“DBMS_LOCK.SLEEP(5);”表示暂停5秒。 DBMS_OUTPUT提示缓冲区不够,怎么增加?...如何在Oracle中写操作系统文件,如写日志? 可以利用UTL_FILE包,但是,在此之前,要注意设置好UTL_FILE_DIR初始化参数。

    28.8K30

    如何在WebStorm中获得对数据库工具和SQL的支持

    虽然我们没有将数据库插件与 WebStorm 捆绑在一起,但早就有办法通过购买DataGrip或所有产品包订阅来获得里面的数据库和 SQL 支持,这将允许你安装数据库插件并在 WebStorm 中使用它...从 v2020.2 开始,你可以订阅我们的数据库插件,并在 WebStorm 中以合理的价格使用它。 如何试用该插件 要安装插件,请转至“首选项/设置” |“设置”。...单击搜索结果中“Database tools and SQL”插件旁边的“Install”按钮,然后重新启动 IDE。 接下来,系统将提示你激活许可证。如果你已经有一个,你可以在那里直接激活它。...你从数据库插件中得到什么 安装了数据库插件后,你就可以使用 DataGrip 的所有功能,DataGrip 是我们独立的数据库 IDE。 ?...为你在 WebStorm 中的项目提供类似的编码协助。 多种导入和导出数据选项。 如果你想了解更多有关可用功能的信息,请访问此网页,你也可以查看DataGrip 博客,以了解最新的改进和新闻。

    3.9K30

    Flutter 流体滑块

    下面的演示视频显示了如何在颤动中创建流畅的滑块。它显示了如何在flutter应用程序中使用flutter_fluid_slider软件包来工作流体滑块传送带。...另外,我们将添加滑块颜色。当我们运行应用程序时,我们应该获得屏幕的输出,如屏幕下方的截图所示。 img 现在,我们将创建另一个FluidSlider()。...在内部,我们将在value方法中添加一个变量;max表示最大值 是用户可以选择的值,并且大于或等于最小值。添加滑块颜色和拇指颜色。在此滑块中,我们将添加开始意味着小部件将显示为最小标签。...当我们运行应用程序时,我们应该获得屏幕的输出,如屏幕下方的截图所示。 img 现在,我们将创建第三个“流体”滑块。...在此滑块中,我们将在value方法中添加一个变量,滑块颜色,onChanged,mapValueToString表示将双精度值映射到String文本的回调函数。

    11.7K20

    如何在算法比赛中获得出色的表现 :改善模型的5个重要技巧

    填补nan,消除异常值,把数据分割成类别的齐次观察……做一些简单的探索性数据分析,以获得您正在进行的工作的概述(这将帮助您获得见解和想法)。这是这个阶段最重要的一步。...最常见的超参数搜索策略包括: 网格搜索(请永远不要这样做):就我而言,这是性能最差的方法,因为对于某些值,您可能会完全错过某个模式或性能的局部峰值,它包含或测试按您可能的值间隔平均分布的超参数值定义;...它们在不同级别上工作: 在优化过程中,请不要忘记添加学习速率调度程序,以帮助获得更精确的训练(从小开始,当模型学习良好时逐渐增加,例如减少平稳的步伐)。...我的个人建议是,我总是将自己的分袋后的最终模型中保存的每一个模型预测保存下来,然后将它们平均化(只是基本平均,我从未发现过任何“巧妙”整合的证据,例如权重)模特的独奏表现会在最终得分中添加任何内容)。...希望您喜欢这篇文章,希望你在比赛中获得更好的成绩。

    92540

    什么岗位需要学习 OpenGL ES ?说说 3.X 的新特性

    它是标准 OpenGL 3D 图形库的一个子集,专门为资源受限的环境(如手机、平板电脑、游戏机和其他便携式设备)进行了优化。...随着技术的发展,新的图形 API(如 Vulkan 和 Metal )也开始在移动平台上获得关注,但 OpenGL ES 仍然是一个重要的基准和学习起点。...sRGB 纹理,通常用于存储和显示经过 sRGB gamma 校正的图像,以获得更准确和更自然的颜色显示效果。 浮点纹理,常用于计算着色器(Compute Shader)。 着色器 二进制程序文件。...这种技术可以显著提高渲染大量相似物体(如粒子系统、草叶、树木等)的效率。 缓冲区对象 UBO(Uniform Buffer Objects)。UBO 是一种用于在渲染中传递大量数据的机制。...允许应用程序同时渲染到多个颜色缓冲区。 多重采样渲染缓冲区。减少锯齿和边缘的颤动,从而改善图像的平滑度和质量。 帧缓冲区失效机制。

    33200

    吴恩达论文登上Nature Medicine!利用神经网络诊断心率不齐

    与近期其他 DNN 方法不同,ECG 数据无需经过大量预处理(如傅立叶变换或小波变换),就可以获得强大的 DNN 分类性能。 ?...DNN F1 得分的趋势与心脏科医生平均 F1 得分的趋势一致:二者在类似类别上的 F1 分数都比较低,如室性心动过速和房性异位节律(EAR)。...将特异度固定在心脏科医生达到的平均特异度水平,DNN 的灵敏度超过心脏科医生在所有心律分类中的平均灵敏度。 ? 研究人员发现该模型在所有心律类型分类中的表现足以比肩、甚至超过心脏病医生的平均表现。...研究人员绘制了序列级心律分析的 ROC曲线和 PR 曲线,下图以心房颤动为例。单个心脏病医生的表现和心脏病医生的平均表现也显示在下图中。 ?...为了证明 DNN 架构能够泛化至外部数据,研究人员将 DNN 模型应用于 2017 PhysioNet 挑战赛数据,该数据包含 4 种心律:窦性心律、心房颤动、噪声和其它。

    2.6K40
    领券